
Abstract
In the nonlinear science chaos synchronization and suppression is an important problem. Here, we discuss how 
synchronisation and cessation of oscillation is appeared in two coupled chaotic system depending on coupling parameter 
under simulataneous presence of direct and indirect coupling. We have performed linear stability analysis and derive the 
explicit conditions of getting amplitude death which agree well with numerical results.
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Introduction

Nature is full of non-linear system that might be periodic 
or chaotic, delayed or non-delayed and they are rarely 

isolated. Therefore the study of collective behavior of two or 
more coupled system, named as cooperative phenomenon, 
is important in many fields like physical science, engineering, 
biological science etc.[1]. Depending on coupling scheme, 
feedback loop, coupling strength parameter, time delay 
etc. the interacting dynamical systems collectively emerges 
several important phenomena like synchronisation, 
amplitude death (AD) etc.[2]. In simple, when two or more 
identical or nonidentical systems maintain same dynamics 
(that may also be a function of one’s dynamics) by adjusting 
some property like amplitude and phase then it is called 
synchronization. Pecora and Carrol [3] first showed that under 
certain conditions synchronization of two chaotic systems is 
possible. In last few decades after their work many research 
had been done on synchronization and explore various forms 
of synchronization [4-7]. 

Along with synchronization the oscillation quenching, 
loss of rhythmic activity, in coupled oscillators is also an 
important topic of research in many fields of natural sciences, 
such as physics, biology, engineering, [2,8,9] etc. The amplitude 
death (AD) state is a stable homogeneous steady state (HSS), 
arises in the coupled oscillators under some parametric 
conditions [2,10-12] when they collectively go to a stable fixed 
point due to their mutual interaction and/or interaction with 
environment. This is relevant when suppression of unwanted 
oscillations are to be required like laser system [13], multi-
module floating airport [14], neuronal systems [15], electronic 
circuits [9,16]  etc.

Chaos is aperiodic long-term behavior in a system that 
exhibit sensitive dependence on initial conditions. Poincaré 
(in 1800s) first glimpsed the possibility of chaos, in which a 
system exhibit aperiodic behavior that depends on initial 
conditions.[17] Invention of high speed computer enables 
the scientists to experiment with the nonlinear equation 
and eventually in 1963 Lorenz discover the chaotic motion 
on a strange attractor. In a chaotic system there are infinite 
number of unstable periodic orbits embedded in the chaotic 
attractor. Chaotic systems are inherently unpredictable due 
to the extreme critical dependence on the initial conditions. 
This unpredictable nature has both beneficial effect, as it may 
be strengthen the secured communication, and detrimental 
effect as it may leads irregular operations, disaster and 
collapse etc. Thus proper control of chaotic motion, which 
includes both chaos synchronization and suppression, is 
very important.

Among various coupling scheme direct-indirect 
coupling scheme has its own importance as in many system 



Cooperative Phenomenon of Coupled Rössler Oscillators

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 13, Issue 2 (2021) 169

particularly in biological system, oscillators not only interact 
diffusively but also interact indirectly through their common 
environment. In general direct-indirect coupling topology 
is used to achieve oscillation quenching [16,18]. Time delay, 
which is inubiqutous in natuer, facilitate the emergence of 
amplitude death (AD) and oscillation death (OD) [9,10,19-24]. 
In this study we investigate thecoupled dynamics of two 
coupled chaotic Rössler system using direct-indirect coupling 
scheme. We explained our study both theoretically and 
numerically. 

The rest of the paper is organized as follows: we 
describe the general mathematical model of the coupled 
system consisting of direct-indirect coupling scheme with 
propagation delay in system description section. We explain 
the approximate stability analysis in stability analysis section 
and observation from numerical analysis for the coupled 
system later. Next we summarize the main findings of the 
whole study in conclusion.

System Description: Chaotic Oscillator without 
Delay; Rössler Oscillator 
We consider two identical Rössler oscillators which are in 
chaotic mode coupled directly through diffusive coupling 
with coupling strength d  as well as indirectly through 
a common environment s  coupling strength ε . The 
mathematical model looks like equation (1)

	
( )

ÿ

1 1 1 2 1u v w d u u sε= − − + − +

	

ÿ

1 1 1v u av= +
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Where a , b  and c  are controlling parameters of Rössler 
system. Depending on the values of a , b  and c  the system 
behave as either periodic or chaotic. For lower value of c
it show periodic nature but with increase of c  the system 
becomes chaotic through period doubling route. The 
bifurcation diagram in Figure 1(b) depicts it clearly. For the 
value of 0.2a = , 0.2b =  and 5c =  the uncoupled oscillators 
show their chaotic nature which is shown by phase diagram 
(Figure 1(a)) and time series plot (Figure.2(a)). d  and ε  
determine the strength of the diffusive (direct) coupling 

and indirect coupling with environment. An over-damped 

oscillator with damping coefficient ( )0κ <  is used to model 
environment s and it decays monotonically toward the zero 
steady state in absence of both oscillator and remains in that 
dormant state.

Stability analysis  
To get the steady state condition we have performed 
stability analysis. For this, linearizing  equation (1)  around the 
equilibrium point ( )* * * * *, , ,

T
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obtain the following characteristic equation with *
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and *

iw β= .
Now let left hand side of equation  (2) is equal to I . Then 

after simplify the determinant ( I ) one can get
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Figure 1: (a) Phase diagram of the chaotic uncoupled 
Rössler system with 0.2a = , 0.2b = , 5c = . (b) Bifurcation 
diagram for Rssler system for varying parameter c  (inset 
figure shows the zoom of the plot in the range 0c =  to 

10c = ). With increasing c  system enters into chaotic zone 
through multiple periode doubling routes
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Now putting the value of 1I , 2I , 3I , 4I  in equation (3) and 
further simplification gives
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With

( ) ( ) ( )( )( )A a a dβ λ α λ λ α λ λ= − + − − − − + (9)

So after all those above simplification the equation (3) looks 
like

2[( ) ( )( )( ( ))][ ( )( )] 0A a d A d ak l a l l e k l a l l+ - - - - + - - - = (10)

The steady state of the coupled systems are locally stable if 
and only if all the roots of the characteristic equations (2) are 
in the left half complex plane that is real part of eigen value 
is negative. To get the stability condition of the fixed points 
we apply the Routh–Hurwitz stability criterion. If real part 

of maximum eigen value is negative then we get Amplitude 
death (AD) region. And we notice that this region depends 
on parameter value. From equation (10) we get either
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Now if we simplify more, the equation (11) looks like
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According to the Routh-Hurwitz stability criterion 0 1 1 1 4, , , ,A A B C A  
(values are given in equations (14) and (15) must be +ve for 
stable equilibrium. Where
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Again simplifying the equation (12) we get the following 
inequalities as equation (16) for stable fixed point:
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To get AD we must have 0 0A ≥ , 1 0A ≥ , 1 0B ≥ , 1 0C ≥ , 4 0A ≥  
along with the inequalities given by equation (16). So if any 
one of those conditions does not obey then system will not 
be stable and become oscillatory.

Numerical Results 
W e  u s e  f o u r t h - o r d e r  R u n g e – K u t t a  a l g o r i t h m 
with step size 0.001h =  to  integrate equation (1) 
numerically. We fixed the system parameters 0.2a = , 

0.2b =  and 5c =  so that individual oscillator system shows 
chaotic oscillations. Here, We consider the system is in death 
state when the amplitude of oscillation is either zero or less 
than equal to 0.001 after running the time interval 0 to 4000. 

Presence of only diffusive coupling:
First we consider only diffusive coupling by setting 0ε =  i.e, 
there is no effect of environment. As we increase the value of 
diffusive coupling strength d  we notice that coupled chaotic 
systems become synchronised to each other. We calculate 
synchronisation error ( se  ) to realize and represent the 
synchronisation where 1 2se u u= −  at a certain time. Zero value 
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of synchronisation error ( se ) indicates total synchronisation. 
The numerical results are represented in Figure 2 which 
clearly shows that beyond a certain value of d one can get 
synchronisation.  Figure 2(a) represents the time series of 
non-coupled chaotic systems which are not synchronised 
and Figure 2(b) also confirms that which shows the plot 
of synchronisation error ( se ) with time. But as we increase 
the couling strength both systems gradually becomes 
synchronised with each other beyond a certain value of d  
(Figure 2(c) with  0.05d = ) and one can easily realize it as after 
acertain time corresponding se  becomes zero (Figure 2(d)).

Dynamics in d ε−  space:
Next we consider the indirect coupling through their 
common environment i.e., 0ε ≠ . We fix the value 2κ =  
and we investigate the coupled dynamics in d ε−  region. 
The two-parameter stability diagram in the d ε−  space (

2κ =  is shown in Figure 3(a) showing AD zone (Red/dark 
grey) and oscillatory zone (Green/light grey). Solid black line 
indicates theoretical border line originating from stability 
analysis condition. With the increase of effect of environment 
coupling that is with the increase of ε  value the coupled 
system enter into amplitude death (AD) zone through inverse 
hopf-bifurcation. For detail analysis we draw the bifurcation 

diagram (Figure 3(b)) with changing ε  which indicates hopf 
point exists at 0.664ε =  denoted as HB. In that figure ‘PD’ 
denotes where period doubling occurs. Blue points indicate 
unstable limit cycle. We also draw time series plot for those 
two points indicated by yellow color in Figure 3(a). This time-
series plot clearly shows the as we increase the ε  value the 
coupled system transit from oscillatory zone (here 0.3ε = ) to 
AD zone (here, 1ε = ).

Conclusion
In this paper we have studied coupled dynamics of chaotic 
Rössler oscillator using direct and indirect coupling scheme. 
We explore how diffusive and environment coupling affects 
the collective dynamics of two coupled non-delayed chaotic 
oscillators. We systematically represent our results getting 
from numerical simulation which may help to realize the 
couple dynamics. In absence of indirect coupling, diffusive 
coupling strengthen the synchronisation effect. But indirect 
coupling through environment along with diffusive coupling 
helps to transit the coupled systems from oscillatory zone 
to amplitude death zone. We have performed theoretical 
stability analysis which solidify those numerical findings. 
We believe that our study is significant in the context of 
emergence of AD and mechanism behind transition from 
chaotic oscilllations to AD.

Figure 2: (a) Time series of 1u (red) and 2u (blue) in absence 
of any coupling i.e, 0d =  and 0ε =  showing non-coupled 
oscillators are in chaotic mode and as well as they are in 
non synchronous states. (b) Plot of synchronisation error 
vs time for 0d =  and 0ε = . (c) Time series of  1u (red) and 2u
(blue) in presence of only diffusive coupling. Here 0.05d =

and 0ε =  showing synchronisation of coupled oscillators. 
(d) plot of synchronisation error vs time for 0.05d =  and 

0ε = . Here 0.2a = , 0.2b =  and 5c = .

Figure 3: (a) Two-parameter stability diagram in the d ε−  
space ( 2κ = ) showing AD zone (Red/dark grey) and 
oscillatory zone (Green/light grey). Black line indicates 
theoretical border line. (b) Bifurcation diagram with 
changing ε  along the dashed yellow line of (a) ( 0.5d = ). 
(c) Time series plot showing oscillation at ( 0.3ε = ) and 
AD ( 1ε = ) with. Points on the dashed yellow line indicate 
the parameters for which time series are generated. Here  

0.2a = , 0.2b =  and 5c = .
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