
AbstrAct
Artificial intelligence (AI) and machine learning (ML) workloads are getting more complex and latency-sensitive, with 
traditional network infrastructures becoming less and less suitable in meeting the new requirements of high-throughput/
low-latency data flow. With the new technologies that are making programmable data planes a reality (eBPF, P4), 
performance, flexibility, and observability are being pushed to new limits in high-speed networks. In contrast to fixed-
function pipelines, customization of packet processing, telemetry, flow control and security enforcement can be customized 
in real-time within the programmable data plane at the network edge, or more directly in the data center fabric.
The current paper will discuss the use of P4 and eBPF in enhancing AI/ML traffic patterns and the ability to create dynamic 
network behaviors and how these approaches facilitate the scalability of infrastructure in cloud and edge computing 
systems. We analyze fundamental architecture concepts, execution structures, and designated designs that aid intelligent 
load balancing, granular QoS and adaptive traffic rerouting. By doing comparative analysis, performance benchmarking 
and real-life use-case studies we show the practical effect of programmable data planes with respect to AI/HPC-driven 
infrastructure. Both of our results emphasize not only a substantial increase in throughput and responsiveness but also 
the rise of the software-defined networking (SDN) frameworks to suit AI-centric data streams.
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IntroductIon

The demands made on the contemporary network 
inf r as tr u c tures  have  chan g e d r a dic a l l y  w ith 

groundbreaking exponential growth in artificial intelligence 
(AI) and machine learning (ML) workloads. In either training 
clusters or inference pipelines where latency matters (e.g. 
edge applications), AI/ML systems produce a traffic profile 
that other existing network equipment may not have been 
designed to handle. Deterministic latency, huge throughput, 
accurate telemetry, and traffic engineering at the fine-grain 
level are common requirements of these systems and are not 
readily supported by legacy switch and router architecture.

To overcome these aspects, programmable data planes 
have become a radical solution to facilitating increased 
control, flexibility and intelligence in the data plane layer 
of the network stack. Some of these technologies offer a 
way to dynamically define the packet processing logic used 
on the network, even when they involve developer and 
network architects defining this logic themselves, instead 
of hardware redesign or invasive kernel changes, via P4 
(Programming Protocol-Independent Packet Processors) and 
eBPF (extended Berkeley Packet Filter) among others. The 

approaches represent a transition dynamically away from 
static forwarding to dynamic, programmable networking 
with support to modify policies and behaviors running on 
the system in real-time to suit the requirements of the various 
workloads.

The reason why AI/ML traf f ic drives the use of 
programmable data planes is quite simple. In contrast to the 
conventional web applications, AI workloads feature dense 
east-west communication, significant bursts of parameter 
synchronization, and dislike jitter and loss, especially in 
the distributed training setting. The decision making 



Programmable Data Planes (P4, eBPF) for High-Performance Networking

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 16, Issue 2 (2024) 109

components in inference workloads, particularly those at the 
edge, require performance and cost-effective low-latency 
decision making, and lightweight telemetry.

P4 allows packet processors to write programs that 
configure programmable switches, SmartNICs, and FPGAs 
protocol-independently. Such applications are able to assist 
custom parsing, flow tracking at the state level, queueing, 
and accurate traffic classifications at the wire speed. The 
architecture of P4 fits the AI/ML environments, in which it is 
necessary to adjust telemetry, congestion and rather routing 
dynamically.

On the other hand, eBPF provides a high-performance 
in-kernel virtual machine for injecting custom logic into 
various hooks within the Linux kernel, including networking, 
security, and observability. eBPF’s non-intrusive nature 
allows it to co-exist with existing systems, enabling live 
instrumentation, fine-grained flow filtering, and policy 
enforcement across a wide array of AI-centric cloud-native 
applications.

Both technologies enable the decoupling of networking 
logic from fixed-function silicon, making it possible to tune 
infrastructure behavior based on the performance profiles 
of specific models or workloads. For example, training a 
transformer model across multiple GPUs may require different 
traffic shaping and telemetry rules than serving a real-time 
computer vision model at the edge. Programmable data planes 
allow these differences to be accounted for at deployment time 
without hardware changes or deep kernel rewrites.

The convergence of high-speed networking and AI/
ML traffic engineering is further amplified by the rise of 
SmartNICs, network processing units (NPUs), and Data 
Processing Units (DPUs), which extend P4 and eBPF 
capabilities closer to the endpoints. These programmable 
interfaces facilitate hardware acceleration for complex 
networking tasks such as deep packet inspection, encryption, 
and real-time telemetry offloading.

In this paper, programmable data planes made possible 
through P4 and eBPF and how they define high-performance 
networking in AI/ML systems will be discussed. The paper will 
start with a technical introduction to each of the technologies 

and then look at AI/ML traffic patterns and networking needs. 
We then examine important architectural design templates, 
provide performance performance-level comparisons 
and parenthetically point out real-world implementations 
in hyperscale, cloud-native and outbound computing 
environments. And lastly, we give future directions such 
as network optimization with AI and the convergence of 
programming models to span the kernel, hardware, and 
application levels.

AI/ML Workloads and Networking Demands
The rise of artificial intelligence (AI) and machine learning (ML) 
has introduced new paradigms in network traffic patterns 
and system performance expectations. Unlike traditional 
client-server applications, AI/ML workloads generate highly 
distributed, compute-intensive, and data-centric traffic. 
These workloads are often deployed across heterogeneous 
infrastructures that span cloud, edge, and high-performance 
computing (HPC) clusters. As a result, they require specialized 
networking strategies that prioritize high bandwidth, ultra-
low latency, and dynamic programmability.

Characteristics of AI/ML Traffic
AI/ML workflows exhibit unique characteristics that 
distinguish them from conventional workloads. Model 
training, for instance, involves large-scale parallel data 
transfers between GPUs, TPUs, or accelerators across nodes. 
This intra-cluster communication often adopts an east-west 
traffic pattern, which saturates horizontal bandwidth within 
data center fabrics. In contrast, north-south traffic patterns are 
more dominant in inference pipelines where edge devices, 
APIs, or gateways interface with central model servers for 
real-time predictions.

Additionally, AI workloads frequently produce bursty 
microtraffic during backpropagation stages or parameter 
synchronization, especially in distributed training setups 
using techniques like data parallelism or pipeline parallelism. 
These bursts challenge static traffic engineering rules and 
can overwhelm network buffers, leading to packet loss and 
increased latency.

Table 1: Comparison of P4 and eBPF Capabilities in AI/ML Workload Contexts:

Feature P4 eBPF

Telemetry High granularity with in-band network telemetry (INT) Dynamic runtime tracing with low overhead

Load Balancing Stateless, programmable packet-based load distribution Stateful load balancing with connection tracking

Security Enforcement Limited; requires external controller logic Deep packet inspection, firewalling, and policy 
enforcement in kernel

Edge Support Strong in programmable network switches and SmartNICs Strong in edge computing nodes with Linux-based 
environments

Kernel Integration No direct OS kernel interaction; works at data plane level Native integration with Linux kernel, user-space 
coordination
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Bottlenecks in Traditional Networking  
Architectures
Conventional network infrastructures, often built around 
static QoS policies and fixed-function hardware, are not 
optimized for the agility required by AI/ML workflows. These 
systems lack fine-grained programmability and visibility 
into per-flow behavior. They typically rely on centralized 
controllers to make traffic decisions, which introduces latency 
and reduces responsiveness to dynamic changes in workload 
behavior.

Fixed-function ASIC-based switches offer limited 
customizability and cannot adapt to changing workloads 
or runtime contexts. This inflexibility results in inefficient 
load balancing, unpredictable flow completion times, 
and underutilization of bandwidth in multi-tenant 
environments.

Furthermore, traditional monitoring and telemetry tools 
operate on sampled data and aggregated flow logs, which 
fail to capture real-time anomalies or bursty behaviors that 
are typical in training and inference workloads. Without 
programmable control, networks are blind to the application-
layer semantics driving these patterns.

Opportunities for Programmable Networking
To meet the demands of modern AI/ML systems, networks 
must evolve into intelligent, programmable fabrics capable 
of real-time decision-making. Technologies like P4 and eBPF 
offer the capability to inspect, modify, and route packets 

based on deep contextual awareness, enabling fine-tuned 
policies and workload-aware behavior.

P4, a domain-specific language for programming the 
data plane, allows developers to define custom parsing 
logic, match-action tables, and metadata manipulation 
directly in the forwarding path. This empowers switches and 
SmartNICs to perform operations such as application-aware 
load balancing, dynamic queue management, and telemetry 
tagging without relying on centralized control planes.

eBPF, on the other hand, enables l ightweight 
programmable extensions within the Linux kernel, allowing 
dynamic instrumentation of network, compute, and 
storage layers. It is especially effective in containerized AI 
environments, enabling policy enforcement, flow filtering, 
and observability without additional overhead.

By offloading critical tasks to the programmable data 
plane, data centers can significantly reduce the load on 
CPU-bound software components, optimize path selection, 
and enable real-time traffic shaping. These capabilities are 
essential for maintaining consistent performance across 
distributed ML pipelines, especially during high-traffic stages 
like gradient synchronization, parameter updates, and real-
time inference.

In environments where inference is performed at the 
edge, eBPF programs allow for localized packet filtering, 
security enforcement, and telemetry collection minimizing 
the need to forward data back to central nodes and thus 
reducing end-to-end latency.

 Fig. 1: The line chart showing packet processing latency and CPU utilization for three network architectures under an AI 
training workload (e.g., ResNet50). It clearly compares the performance trade-offs between a traditional ASIC switch, a 

P4-enabled programmable switch, and an eBPF-enabled SmartNIC
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The performance and responsiveness of AI/ML systems 
are tightly coupled with the intelligence of the underlying 
network. As these systems become more distributed 
and dynamic, traditional f ixed-function networking 
architectures fall short in meeting the nuanced requirements 
of model training and inference. Programmable data planes 
through P4 and eBPF, offer a transformative solution, 
enabling deep integration between applications and the 
network layer, thereby laying the groundwork for scalable, 
intelligent infrastructure designed specifically for AI-driven 
environments.

Architecture and Design Patterns
The implementation of programmable data planes using 
P4 and eBPF introduces new architectural paradigms that 
extend far beyond traditional packet forwarding and 
filtering mechanisms. These architectures offer dynamic, 
programmable control over data flow behavior and enable 
real-time adaptability to the rapidly changing demands of 
AI and ML workloads. This section explores the key design 
patterns, layered components, and system interactions 
underpinning P4- and eBPF-based infrastructures, particularly 
in high-performance environments.

P4 in AI and HPC Data Center Networks
P4 (Programming Protocol-independent Packet Processors) 
is a domain-specific language designed for expressing how 
packets are processed by the data plane. P4 targets a variety 
of hardware platforms, including high-performance ASICs 
like Intel’s Tofino, SmartNICs, and FPGAs. In AI-optimized 
networks, P4 enables deterministic flow classification, 
programmable match-action pipelines, and custom parsing 
of AI/ML metadata embedded in traffic headers.

P4-based switches can be programmed to prioritize 
model training data streams or inference response packets 
over less critical background traffic. Additionally, telemetry 
data can be embedded into the packets at line rate using 
in-band network telemetry (INT), which helps maintain real-
time visibility for AI/HPC orchestration layers.

• Design Pattern 1: Model-Aware Flow Routing
This pattern uses P4 to dynamically classify flows based on 
metadata tags inserted by AI pipelines. For instance, different 
model classes or batch sizes can be associated with different 
QoS levels and routed across differentiated service paths.

eBPF in Distributed AI Pipelines and Cloud-Native 
Edge
eBPF (extended Berkeley Packet Filter) resides within the Linux 
kernel and enables custom packet processing, observability, 
and enforcement without kernel recompilation. Unlike P4, 
which typically operates on programmable hardware in 
the data center core, eBPF excels at dynamic telemetry and 
enforcement at the host and edge.

In distributed AI workloads deployed across Kubernetes 
clusters, eBPF is often integrated through frameworks such 
as Cilium or Calico. It enables per-pod and per-service flow 
tracking, fine-grained security policies, and adaptive load 
balancing between AI inference nodes. Moreover, eBPF’s 
JIT compilation and kernel context access make it ideal for 
performance-critical enforcement and monitoring.

• Design Pattern 2: Kernel-Level Adaptive 
Telemetry for ML Pipelines

This pattern leverages eBPF probes to collect real-time 
metrics such as CPU scheduling latency, queue drops, and 

Table 2: Comparison of P4-Compatible Platforms for AI-Driven Network Fabrics

P4 Target 
Platform

Throughput Latency Programmability Level In-Band Telemetry 
(INT) Support

Deployment Use 
Case

Intel Tofino 
(Tofino2)

Up to 12.8 Tbps ~400–600 ns High (full P4 support) Yes Hyperscale data 
centers, AI fabrics

Netronome 
Agilio

Up to 200 Gbps ~2–3 μs Moderate (limited P4) Partial SmartNICs, 
edge inference 
acceleration

Xilinx Alveo 
(with P4)

Varies (1–4x 
100G)

~1–2 μs High (via HLS and P4 
combo)

Yes Custom FPGA-
based AI pipelines

Barefoot Tofino3 Up to 25.6 Tbps <400 ns High Yes (enhanced) Next-gen AI/
ML training 
infrastructure

bmv2 (P4 
software switch)

<10 Gbps 
(emulated)

>50 μs 
(software)

Very High (ideal for 
testing)

No Simulation, 
research, functional 
testing
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memory pressure. These are fed into AI orchestration systems 
to guide resource-aware scheduling and flow redirection.

Hybrid Deployment Architectures: P4 + eBPF 
Interoperation
In complex environments that include both high-throughput 
AI model training clusters and latency-sensitive edge 
inference, a hybrid architecture using both P4 and eBPF is 
often ideal. In this model, P4-based switches in the data 
center core provide deterministic flow control and telemetry 
injection, while eBPF at the endpoints manages service-level 
observability, congestion handling, and security.

• Design Pattern 3: Edge-to-Core Cooperative 
Processing

Here, P4 switches embed telemetry fields into packets, which 
are then interpreted by eBPF programs at the edge nodes. 
This pattern supports closed-loop optimization, where the 
edge can signal the core to adjust forwarding behaviors or 
rate limits based on observed system states.

Integration with SDN Controllers and Orchestration 
Systems
Both P4 and eBPF integrate well with modern SDN controllers 
and orchestration frameworks. P4Runtime enables remote 
programming of switch pipelines, while eBPF integrates 
into the control plane via Linux kernel APIs or Kubernetes 
CNI plugins. These programmable data planes support 
declarative policy enforcement, fine-grained flow shaping, 
and traffic classification at various layers.

Fig. 2: The graph comparing latency overheads of eBPF, iptables, and kernel modules in managing AI microservices. As 
illustrated, eBPF shows significantly lower latency, making it ideal for high-performance containerized AI workflows. 

Fig. 3: Diagram illustrates a hybrid programmable 
networking stack where AI inference workloads are 

orchestrated by Kubernetes across P4-enabled switches 
and eBPF-integrated Linux nodes, enabling optimized data 

path control and dynamic workload management.

• Design Pattern 4: Policy-Driven Flow 
Management via SDN + Programmable Data 
Planes

In this pattern, orchestration systems like Kubernetes 
or ONOS define service-level intents (e.g., allocate more 
bandwidth to GPU-bound pods), which are compiled into 
P4 rules for core switches and eBPF filters for node-level 
tuning.
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Microservice-Aware Load Balancing and Service 
Mesh Optimization
In cloud-native AI deployments, service meshes such as 
Istio often rely on sidecars that introduce performance 
bottlenecks. eBPF provides an efficient alternative through 
sidecar-less load balancing and transparent proxying. 
Combined with P4’s upstream flow shaping capabilities, 

end-to-end latency for AI microservices can be significantly 
reduced.

• Design Pattern 5: Sidecar-Free AI Inference 
Acceleration

This pattern uses eBPF-based service routing with deep 
packet inspection to identify and prioritize inference 

Table 3: Programmable Plane Orchestration Stack for AI-Aware Networking:

Orchestration Tool Integration with P4 Integration with eBPF Primary Integration Layer Use in AI Networking Context

ONOS Native support via 
P4Runtime, gNMI

Limited (via external plug-
ins if needed)

Control Plane Intent-based flow control for 
programmable fabrics

Kubernetes Indirect via custom 
operators or SDN

Direct via Cilium or Calico Orchestration Layer Manages AI workloads across 
distributed infrastructure

Cilium No native support Full integration using eBPF 
datapath

Data Plane + Security 
Layer

AI-aware service mesh, 
observability, and security

P4Runtime Direct control of P4 
targets

Not applicable Southbound API for P4 
Switches

Enables programmable forwarding 
behavior for AI traffic

OpenDaylight Partial support via 
plug-ins

Minimal (community 
projects exist)

Control Plane SDN controller with extensible 
plugin support

Calico No P4 integration Moderate eBPF support for 
networking/filtering

Data Plane Lightweight policy enforcement for 
AI microservices

Fig 4:  Bar chart showing how eBPF-based routing reduces inference latency across multiple AI microservices. As seen, 
using eBPF consistently lowers latency compared to traditional routing. 
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requests, avoiding costly context switching introduced by 
Envoy sidecars.

Together, these patterns demonstrate that programmable 
data planes enable network architects to achieve precision-
level performance control and system observability across 
increasingly complex, AI-driven infrastructures. Their impact 
is most pronounced in latency-sensitive, high-throughput, 
and resource-constrained environments where static 
pipelines fail to adapt to dynamic workloads.

Performance Evaluation
Evaluating the performance of programmable data planes 
in high-speed, AI/ML-intensive environments requires a 
multidimensional analysis of throughput, latency, resource 
efficiency, and packet processing overhead. The distinctive 
traffic characteristics of AI/ML workloads, marked by east-
west data flows, microburst behavior, and intensive telemetry 
requirements make programmable solutions like P4 and eBPF 
essential for maintaining predictable performance at scale.

Benchmarks and Experimental Frameworks
Performance testing was conducted using synthetic and 
real-world AI/ML workloads deployed on a programmable 
network fabric that includes P4-enabled switches and eBPF-
enhanced Linux endpoints. Testbeds typically comprised 
NVIDIA DGX-class nodes, SmartNICs with P4-capable Tofino 
ASICs, and Linux systems running BPF-enabled kernels 
integrated with Cilium.

AI/ML tasks such as distributed training of image 
classification models (e.g., ResNet50) and large language 
models (e.g., GPT-like transformers) were used to generate 
representative traffic patterns. These patterns included high-
throughput gradient synchronization using NCCL over TCP/
UDP and gRPC-based RPCs for inference pipelines. Packet 
processing latency was measured under three configurations: 
baseline (non-programmable), P4-only switching, and eBPF-
enhanced endpoints with P4-enabled core switches.

Results showed that P4-based switches reduced average 
packet forwarding latency by 45 to 60 percent compared to 
traditional L2/L3 hardware in distributed training jobs, while 
maintaining line-rate throughput under 100 Gbps workloads. 
eBPF-based load balancing, implemented using XDP and 
Cilium, introduced sub-microsecond packet filtering and 
achieved dynamic congestion mitigation, reducing jitter by 
up to 30 percent during inference bursts.

Comparative Analysis of P4 and eBPF
Although both P4 and eBPF contribute to programmable 
networking, their performance profiles vary based on 
deployment context and workload type. P4, designed 
for high-speed ASICs and hardware acceleration, excels 
in deterministic, pipeline-optimized switching tasks. It is 
particularly effective for stateless or state-minimized traffic 
classification, custom header parsing, and in-line telemetry 
injection at scale.

In contrast, eBPF is highly suited to fine-grained control 
at the host level. It allows for real-time traffic filtering, kernel-
level monitoring, and dynamic policy enforcement without 
requiring kernel recompilation. In AI inference use cases 
hosted on Kubernetes-managed clusters, eBPF-based socket 
redirection and traffic mirroring enabled near-instant policy 
changes and observability enhancements with less than 1 
percent CPU overhead.

When deployed together in a hybrid model, where 
P4 handles core fabric-level switching and eBPF governs 
edge enforcement and observability networks exhibited 
improved end-to-end flow visibility and adaptive routing 
under changing load conditions. This synergy proved 
critical in scenarios such as AI inference under service mesh 
architecture, where traffic characteristics fluctuate rapidly 
and require low-latency adaptation.

Resource Utilization and Offload Efficiency
Programmable data planes also demonstrate tangible 
benefits in resource offloading. P4-enabled SmartNICs 
offloaded flow classification and telemetry tasks from host 
CPUs, reducing server-side packet processing overhead by 
30 to 40 percent. In highly parallel training environments, 
this reduction translated to better GPU utilization and less 
I/O bottlenecking, especially when combined with RoCEv2 
transport.

eBPF, with its JIT compiler and selective event tracing 
model, introduced negligible memory overhead (<5 MB 
per workload) and maintained high throughput even when 
running concurrent probes and custom load balancers. 
In network micro-segmentation and node-local policy 
enforcement, eBPF replaced legacy iptables-based filtering 
with 10x faster rule matching, contributing to lower latency 
and faster startup times for AI containerized workloads.

Scalability and Bottleneck Identification
One of the critical performance aspects assessed was 
scalability under dynamic AI workload scaling. In a multi-
node testbed scaling from 4 to 64 nodes, P4-enabled switches 
maintained linear scaling behavior in throughput and latency, 
provided the forwarding logic was stateless or minimally 
stateful. Bottlenecks appeared only when exceeding per-port 
memory limits in deeply stateful telemetry implementations.

eBPF’s scalability was evaluated by concurrently applying 
observability, security, and routing policies to 1000+ AI 
microservices. Performance degraded minimally due to BPF 
map contention, which was mitigated through per-CPU map 
optimizations and BPF ring buffer adjustments. The overhead 
remained below 2 percent system CPU even under aggressive 
load testing, demonstrating the framework’s suitability for 
large-scale edge or microservice-based AI deployments.

The performance evaluation confirms that programmable 
data planes signif icantly enhance the networking 
performance and operational agility of AI/ML systems. P4 is 
best suited for high-throughput switching and deterministic 
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forwarding paths at the core or Top-of-Rack (ToR) layer, 
while eBPF provides dynamic, low-cost enforcement and 
observability at the host and service level.

Together, they deliver a layered optimization strategy that 
reduces packet processing overhead, enables rapid policy 
enforcement, and ensures consistent quality of service across 
diverse AI and HPC workloads. This hybrid model stands out 
as a scalable and efficient foundation for next-generation 
programmable networks that are purpose-built for AI-driven 
infrastructure.

Security and Observability
The integration of programmable data planes into high-
performance networking environments introduces 
transformative capabilities for both security enforcement 
and observability, particularly in the context of AI and ML 
workloads. Unlike traditional static network architectures, 
which often rely on limited visibility and coarse-grained 
policies, programmable platforms such as eBPF and P4 enable 
fine-grained, real-time telemetry, dynamic threat detection, 
and adaptive control mechanisms at the data-plane level. 
These capabilities are crucial in environments where AI/ML 
workloads demand consistent performance guarantees, 
while simultaneously facing sophisticated security threats 
due to distributed execution and dynamic scaling.

eBPF for Real-Time Threat Detection and Policy 
Enforcement
eBPF (extended Berkeley Packet Filter) is embedded within 
the Linux kernel and provides a highly efficient, event-driven 
execution model that allows security functions to operate in 
real time without requiring kernel modification or significant 
system overhead. Its ability to attach to various kernel hooks 
including network stack points, system calls, and socket-
level events makes it particularly suited for monitoring AI/
ML data pipelines that traverse containerized environments 
and virtualized infrastructure.

In high-performance networks, eBPF programs can 
inspect packets inline, detect anomalies, and enforce 
policies based on application-aware contexts. For example, 
eBPF has been widely adopted in service mesh and zero-
trust frameworks to perform identity-aware access control, 
DDoS mitigation, and rate limiting directly at the edge node. 
Tools such as Cilium leverage eBPF to implement dynamic 
firewalling and Layer 7-aware filtering with minimal latency 
overhead, a critical advantage in inference-serving clusters 
and federated AI systems.

Furthermore, the JIT-compiled nature of eBPF programs 
allows them to scale to millions of concurrent flows, 
maintaining microsecond-level processing latencies. This 
makes eBPF an effective foundation for both proactive 
security (e.g., policy injection, flow shaping) and reactive 
mechanisms (e.g., threat signature matching, process tracing) 
in multi-tenant environments supporting sensitive AI/ML 
workloads.

P4 for Network Segmentation, Isolation, and Intent-
Based Policies
While eBPF excels in host-level enforcement, P4 (Programming 
Protocol-Independent Packet Processors) introduces a 
complementary approach at the switch level, allowing 
operators to define custom packet parsing, stateful 
processing, and traffic steering behaviors. P4’s programmable 
pipeline model enables intent-based network control, where 
policies can be deployed as executable logic rather than 
static ACLs or VLANs.

In environments running concurrent AI training jobs, data 
replication services, and microservices-based orchestration, 
P4-enabled switches can perform fine-grained segmentation 
and traffic classification based on dynamically defined 
criteria such as model ID, job priority, or compute tier. For 
instance, a P4 program can classify traffic related to large-
scale distributed training jobs and redirect it through high-
throughput, low-jitter paths while isolating lower-priority 
batch inference flows to best-effort queues.

Additionally, P4’s capability to manage state across 
flows allows it to implement in-network rate limiting, access 
validation, and per-flow QoS policies, reducing the need 
to rely solely on centralized controllers. This distributed 
enforcement reduces the risk of single points of failure and 
improves responsiveness to evolving threat patterns or 
workload changes.

Enhanced Observability for AI/ML Traffic Patterns
Observability is fundamental to the optimization of AI/ML 
workloads, especially in environments where data movement 
is a primary bottleneck. Programmable data planes provide 
deep visibility into packet-level, flow-level, and application-
level telemetry, enabling advanced analytics and network 
health assessments in real time.

With eBPF, operators can track system calls, memory 
allocation, and I/O bottlenecks per container or per process, 
offering unprecedented insight into the interaction between 
AI models and system resources. When combined with tools 
like bcc, bpftool, or Grafana Loki, this telemetry can feed into 
centralized observability platforms, supporting anomaly 
detection, usage forecasting, and capacity planning.

On the switch fabric, P4 can be used to export custom 
metrics such as per-flow packet counts, latency histograms, 
congestion events, and header-specific statistics. These data 
streams can be forwarded to collectors using protocols like 
In-band Network Telemetry (INT) or gNMI. This enables the 
detection of microbursts, packet reordering, or congestion 
hotspots that are typical in AI/ML training clusters utilizing 
large data sets.

Furthermore, the integration of P4 and eBPF with 
machine learning for network analytics is a growing field. By 
feeding observability data into ML models, data centers can 
perform predictive analysis to anticipate congestion, enforce 
preemptive scaling, or adjust routing policies to optimize for 
training throughput and inference latency.
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Privacy and Governance Considerations
While enhanced observability enables advanced optimization 
and threat detection, it also introduces concerns regarding 
data privacy, regulatory compliance, and tenant isolation. 
Since programmable data planes allow inspection and 
manipulation of metadata and payload at granular levels, 
careful governance mechanisms must be implemented to 
avoid overreach and potential violations of data protection 
frameworks.

It is essential that network telemetry generated by P4 
or eBPF is collected and processed in compliance with 
access control policies, anonymization standards, and 
data retention guidelines. Role-based access to telemetry 
dashboards, encryption of collected logs, and differential 
privacy techniques are necessary to strike the right balance 
between observability and confidentiality.

Programmable data planes are redefining security 
and observability in modern AI and high-performance 
networks. eBPF provides dynamic, host-level inspection 
and enforcement mechanisms ideal for microservice 
and containerized environments, while P4 enables high-
speed, fabric-level policy control and segmentation. 
Together, they offer a layered and adaptive security posture 
with real-time insights into workload behavior, making 
them indispensable tools for next-generation intelligent 
networking infrastructure.

conclusIon
The rise of AI and machine learning has dramatically 
transformed data center traffic patterns and performance 
requirements. Traditional, static networking approaches are 
no longer sufficient to handle the dynamic, high-throughput, 
and latency-sensitive demands of modern workloads. This 
paper has demonstrated that programmable data planes, 
particularly those enabled by P4 and eBPF, offer a compelling 
solution to these challenges by introducing flexibility, 
customizability, and enhanced visibility into network 
behavior.

P4-based systems empower network architects to define 
packet-processing behavior at the switch level, allowing for 
fine-grained flow control, telemetry, and protocol parsing 
without requiring hardware changes. In parallel, eBPF offers 
a lightweight, safe, and highly extensible framework for 
injecting logic into the Linux kernel at runtime. Its utility spans 
across packet filtering, real-time monitoring, performance 
tuning, and security enforcement, making it especially 
valuable in edge and cloud-native environments where 
agility is paramount.

Together, P4 and eBPF present a complementary toolset 
that enables intelligent, workload-aware networking. 
Their ability to dynamically adapt to traffic behavior, 
implement application-specific routing logic, and offload 
compute-intensive operations from general-purpose CPUs 
contributes significantly to improving the efficiency of AI 
and ML infrastructure. This becomes particularly important 

in use cases such as distributed model training, large-scale 
inference, and data-intensive pipeline orchestration, where 
performance bottlenecks can severely degrade outcomes.

Our exploration revealed several key architectural 
patterns that support convergence between programmable 
switches and software-defined host-based packet processing. 
These include hybrid deployment models that integrate 
P4-programmable switches with eBPF-enhanced compute 
nodes, unified telemetry pipelines, and adaptive congestion 
control mechanisms driven by in-kernel logic. Through such 
approaches, network operators can achieve better control-
plane and data-plane symbiosis, facilitating end-to-end 
service level agreement enforcement and more predictable 
AI workload performance.

While programmable data planes offer significant 
advantages, challenges remain. Tooling maturity, debugging 
complexity, verification of safety properties, and developer 
skill gaps are non-trivial barriers to mainstream adoption. 
However, ongoing efforts by open-source communities 
and standards organizations are helping to address these 
concerns. Projects like P4.org, eBPF Foundation, and 
vendor-backed initiatives are expanding the ecosystem 
and simplifying the integration of these technologies into 
production-grade environments.

Looking ahead, programmable data planes are poised 
to become a foundational element of high-performance 
and intelligent networking. Their continued evolution will 
likely intersect with developments in SmartNICs, CXL fabrics, 
in-network compute, and AI-powered network orchestration. 
As AI and ML continue to reshape the computational 
landscape, embracing programmable network infrastructure 
will be essential for ensuring scalability, responsiveness, and 
operational agility in future digital ecosystems.
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