
301301SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

I N T R O D U C T I O N

A cursor is an iterator that scans and processes a
set of data (records/keys/tuples that meet specified
criteria) one at a time. There are two sorts of cursors
in RDBMSs: user cursors and system cursors. A user
cursor is a cursor that is defined in a user application
by utilising the SQL DCL CURSOR command. System
cursors are those that the RDBMS creates and uses
internally to access tables whose data is required to
respond to user queries. To provide the output
equivalent to a single user cursor, one or more system
cursors may be employed [14]. The cursor can
alternatively be referred to as a handle or a pointer
to the context region. The user can enter the context
region row by row with the cursor and learn some
information about it. Explicit and implicit cursors are
the two sorts of cursors. Oracle defines implicit cursor

RESEARCH ARTICLE

Corresponding Author : Abhijit Banubakode, MET
Institute of Computer Science Mumbai, India; e-mail :
abhijitsiu@gmail.com.

How to cite this article : Banubakode, A., Gadhia, M.
(2022). Query Optimization in Object Oriented Database
Using Cursor with Special Reference to Parallel Processing.
SAMRIDDHI : A Journal of Physical Sciences, Engineering
and Technology, Volume 14, Special Issue (2), 301-306.
Source of support : Nil
Conflict of interest : None

SAMRIDDHI Volume 14, Special Issue 2, 2022 Print ISSN : 2229-7111 Online ISSN : 2454-5767

Query Optimization in Object Oriented Database Using Cursor
with Special Reference to Parallel Processing
Abhijit Banubakode1*, Mohammed Gadhia2

1*,2 MET Institute of Computer Science Mumbai, India; e-mail*: abhijitsiu@gmail.com

A B S T R AC T

Intrusion Detection System is very important tool for network security. However, Intrusion Detection System
suffers from the problem of handling large volume of data and produces high false positive rate. In this
paper, a novel Grading method of ensemble has proposed to overcome limitation of intrusion detection
system. Partial decision tree (PART), RIpple DOwn Rule (RIDOR) learner and J48 decision tree have used as
base classifiers of Grading classifier. Optimzed Genetic Search algorithm have used for selection of
features.These three base classifiers have graded using RandomForest decision tree as a Meta classifier.
Experimental results show that the proposed Grading method of classification offers accuracies of 81.3742%,
99.9159% and 99.8023% on testing, training datasets and cross validation respectively. It is found that the
proposed graded classifier outperform its base classifiers and existing hybrid intrusion detection system in
term of accuracy, false positive rate and model building time.
Keywords: Grading Ensemble, RIDOR, Meta Classifier, Base Learner, AdaBoost.
SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, (2022); DOI : 10.18090/samriddhi.v14spli02.18

The Author(s). 2022 Open Access This article is distributed under the term of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if change were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0) applies to the data made available in this article, unless otherwise stated.

for every SQL query it processes. Explicit cursor is
defined explicitly by the user in a PL/SQL block,
whereas implicit cursor is defined implicitly by Oracle.
[15,16,17] Object-Object-oriented programming is
particularly well suited to the development of
reusable components and complicated applications.

302 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

Query Optimization in Object Oriented Database Using Cursor with Special Reference to Parallel Processing

Object types are the foundation of object-oriented
programming in PL/SQL. They simulate real- world
objects, keep interfaces and implementation details
separate, and maintain object-oriented data in the
database. When building applications that interact
with Java or other object-oriented languages, object
types come in handy. An object type is a user-defined
composite data type that represents a data structure
as well as data manipulation capabilities and processes.
Each variable in a scalar data type has a single value.
All elements in a collection are of the same kind. Only
object types link code to data, and attributes refer to
the variables that make up the data structure.
Methods refer to the object type’s functions and
processes. We discussed structured query language
optimization in our previous paper [9,10,11,12,13].
In this paper, we look at a Retail Banking System’s object-
oriented database. We created query performance by
generating multiple query plans for OODBMS and
implemented cursor using a new approach of object
oriented database. The latest paper [8] was referred
to us. M. Tamer Ozsu discovered a transformation rule
that generates a variety of algebra trees, with the plan
generation stage producing many execution plans for
each tree. Cursor implementation concerns in relation
to object oriented databases are discussed by John
Grant, Jarek Gryz, and Jack Minker [7].

The following is a breakdown of the paper’s
structure. Application and Preliminaries Notation are
described in Sections II. The implementation of object-
oriented schema design is discussed in Section III.
Query optimization in an object- oriented database
is discussed in Section IV. The experimental data are
presented in Section V, and the conclusion is presented
in Section VI.

P R E L I M I N A R I E S N OTAT I O N

 Application

We’re looking at a retail banking system as an example.
The bank is divided into several branches, each of which
is located in a different city and oversees the assets. Cust-
id values are used to identify bank customers. Because
the bank offers two types of accounts, a savings account
and a checking account with a loan facility, the schema’s
relationships and characteristics are as follows [14]:

 TRANS_DET_A (Trans_no,Inst_no,inst_dept,Inst_clr_dt,….)
FDSLAB_MAST_B (Fdslab_No, Minperiod,
Maxperiod…….)
TRANS_MAST_C
(Trans_no,Acct_Mo,Dt,Type,Dr_cr,Amt….)
FD_DET_D (Fd_ser_no,Fd_no ,Type,Payto_acctno,Period…)
ACCT_MAST_E (Acct_no, Sf_no,Lf_no,Branch_no,………)
ACCT_FD_CUST_DET_F(Acct_fd_no,Cust_no)

FD_MAST_G (Fd_Ser_No, Sf_No, Branch_No,

Intro_Cust_No…)

CUST_MAST_H (Cust_No, Fname, Mname, Lname,

Dob_Inc…..)

NOMINEE_MAST_I (Noinee_No, Acct_Fd_No,

Name………)

BRANCH_MAST_J (Branch_No, Name………)

SPRT_DOC_K (Acct_Code, Type, Docs…)

ADDR_DET_L (Addr_No, Code_No, Addr_Type, Area_1,

…)

CNCT_DET_M(Addr_No, Code_No, Cntc_Type,

Cntc_Data.........)

EMP_MAST_N(Emp_No, Branch_No, Fname, Mname,

Dept........)

Figure 1: Object that is being considered for use
in the banking system

CURSOR1 cursor_name IS
SELECT_statement;

TRAN S_MS TR AC CT_M ST R ACCT _FD_ CUS T_DT L S C US T_ M STR

TRA NS_ NO AC CT_ NO ACC T_FD _N O C US T _NO

TYPE

DR_C R

AM T

BR AN CH _N O

I NTR O_ CU ST_N O

I NTR O_ AC CT_N O

I NTR O_ SIG N TY PE

O PR_M OD E

CU R_A CCT _TYPE

TI TLE

CO RP _CU ST_N O

A PLND T

M N AM E L NA ME

D OB _I NC O CC UP

P HO TO GR APH

S I G NA TUR E

P AN CO Y

AD DR_ DTL S

AD DR _N O

CO DE _NO

AD DR_ TYPE

AR EA_1

CI TY

STATE

TRA NS_ DTLS

TRA N S _N O

I NST _NO

I NST _DE PT

IN ST_ CLR_D T

PI NC O DE

N OM IN EE_M STR

N OI N EE_N O

A CCT _FD _NO

CN CT _DTL S

A DD R_N O

CN TC_T YPE

BR AN CH _NA M E C NTC _DA TA

PA ID FOR M

PA YTO

F D _DT LS

F D _SER_ NO

F D _NO TYPE

PAY TO_ ACC TNO

PER IO D O PEN D T

DU ED T

AM T

DU EAM T

VE RI _SI GN

M A NAG ER _S IG N

CU RB AL

FD_ M S TR
D OB

BR AN CH _N O

B RAN CH_ M STR

I NTR O_ SIG N

AC CT_ NO

EM P_M STR

EM P_ NO

BRA NC H_N O

FNA M E

MNA M E

LNA M E DEP T

DES IG N

FDSLA B_M STR CO RP _CU ST_N O

CO RP_ CNS T _TYPE

SPR T_D OC

AC CT_C OD E

TYP E

IN TRA TE

VE RI _S I FN

Figure 2: Object Oriented Schema for Retail Banking System

 Preparation and Alphabet

Declaring a cursor gives the cursor a name and connects
it to a select statement. A PL/SQL block’s declaration
section defines an explicit cursor. The syntax is

Where cursor name is the cursor's name. The select
statement is the query that specifies the collection of
rows that the cursor will process.

I M P L I M E N TAT I O N

We use a typical object-oriented schema of a retail
banking system as the database to demonstrate
object- oriented query optimizations.

303303SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

Query Optimization in Object Oriented Database Using Cursor with Special Reference to Parallel Processing

In optimization process we considered empaddress
table as object and created modify address procedure
and define the various member functions like area info,
city info, state info, postalinfo, phone info and
setphoneinfo as shown in Figure. 3 our aim is to find out
the particular place in a city for that we use empaddress
object. Then we created body empaddress as member
procedure modify address if area_1 is null then
application error exception is to be raised and ‘The new
address is not the correct address ‘ is to be print else
all assignment operation is to be done. Further we
created type address det as object it consist of various
field like house name, house address and house name.
Finally we implemented concept of cursor as shown
in Figure. 4

O P T I M I Z AT I O N O F Q U E R I E S I N O B J E C T-
O R I E N T E D D ATA B A S E

If a query is complicated, query optimization is the
process of selecting the most efficient query- evaluation
approach among a choice of options. One aspect of
optimization at the relational algebra level occurs when
the system tries to identify an expression that is similar

 CREATE OR REPLACE TYPE empaddress AS OBJECT
(Area_11 VARCHAR2(100),
Area_22 VARCHAR2(100),
City1 VARCHAR2(100),
State1 VARCHAR2(10),
Pin_code1 VARCHAR2(5),
Phone_number1 VARCHAR2(10),

MEMBER PROCEDURE ModifyAddress
MEMBER FUNCTION postalinfo1 RETURN VARCHAR2,
MEMBER FUNCTION phoneinfo1 RETURN VARCHAR2,
MEMBER PROCEDURE setphoneinfo2 (newPhone
IN VARCHAR2));

 (A_1 IN VARCHAR2, A_2 IN VARCHAR2, cty IN

VARCHAR2, stat IN VARCHAR2,pin IN VARCHAR
2),
DECLARE

this_society addressdet;

CURSOR all_society IS
SELECT value (b) AS house

FROM address_dtls b
ORDER BY b.HouseName;

BEGIN
FOR one_society IN all_society LOOP
this_society := one_society.house;

dbms_output.put_line(this_society.HouseNa
me || 'is situated in'
|| this_society.HouseAddress.city || ' '
|| this_society.HouseAddress.state);

END LOOP;
COMMIT;
END;

Figure 3: Creation of object and Member Procedure

to a given application but more efficient to execute.
Another factor to consider is developing a comprehensive
strategy for addressing the query, such as the algorithm
to use for executing the operation, the indices to use, and
so on. To produce alternative query strategies, we
employ Optimizer hints. Hints assist the optimizer in
making decisions that it would otherwise make. Hints
allow the optimizer to select a certain query execution
plan based on a set of criteria. [4] The following are the
different types of hints: Single-table hints are hints that
apply to a single table or view. Single-table hints like
INDEX and USE _NL are examples. Multi-table clues are
similar to single-table hints, but they can indicate many
tables or views. Because USE NL is a shortcut for USE NL
and USE NL, it is not considered a multi-table hint. Single
query blocks are affected by query block hints. Query
block suggestions include STAR TRANSFORMATION and
UNNEST. The entire SQL statement is affected by
statement hints. A statement hint like ALL ROWS is an
example. By putting clues for a SQL statement in a remark
within the statement, Hint Syntax can communicate
them to the optimizer. Following the SELECT, UPDATE,
MERGE, or DELETE keyword, a block in a statement can
only include one remark with clues. We employ the
following types of tips in our experiments.

FIRST_ROWS(N)

The FIRST ROWS(n) hint tells Oracle to optimise a
single SQL statement for speed by selecting the best
plan for returning the first n rows.

PARALLEL Hint

The PARALLEL hint specifies how many concurrent
servers can be utilized for a parallel process. The hint
is valid for the SELECT, INSERT, UPDATE, and DELETE
parts of a statement, as well as the table scan part.

The hint is disregarded if any parallel limitations are
broken.
Parallel hint: =

/*+ (In t. 1st_Rows

)

 @ queryb lock
/*+ (

integer

tablespe
c

)
 *

PARALLEL

304 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

Query
Plan1

SELECT /*+ ALL_ROWS1 */ value (b) AS house
FROM address1_dtls b ORDER BY b.HouseName;

Execution
Plan

Execution Plan

 0 SELECT STATEMENT Optimizer=HINT: ALL_ROWS
1 (Cost=6 Card=50 Bytes=6615)
1 0 SORT (ORDER BY) (Cost=6 Card=45 Bytes=6615)
2 1 TABLE ACCESS (FULL) OF 'ADDRESS_DTLS'

(TABLE)
(Cost=4 Card=45 Bytes=6615)

Cost= 16 l Card=145 Bytes=19845 Elapsed:
:00:00.35

Tkprof
Output

call

Parse
Execute
Fetch

count

1
1
4

cpu elapsed disk query current
-------- ---------- ---------- ---------- ----------

0.01 0.03 10 52 0
0.01 0.00 0 0 0
0.00 0.00 0 4 0

rows

0
0

44

total

6

0.02 0.03 10 56 0

44

Figure 4: The result of SQL trace and the tkprof utility

The execution plans generated by SQL trace are based
on three different parameters: Cost, Cardinality, and
Bytes. Oracle’s inbuilt query optimizers estimate these
parameters. Cost is the sum of CPU cost and IO Cost,
Cardinality is the number of rows accessed, and Byte
is the number of bytes accessed [5, 6]. Tkpr of accurately
evaluates the SQL statements that an application
executes the tkprof application formats the contents
of the trace file and outputs it to a readable output
file. Optionally, tkprof can calculate SQL statement
execution plans and generate a SQL script that keeps

the statistics in the database. tkprof displays the
resources used by each statement, as well as the
number of times it was called and the number of rows
it processed. This data makes it simple to find the
statements that are consuming the most resources. It
has the following features: value of a call Parse: Converts
a SQL statement into an execution plan, which includes
checks for valid security authorization and the existence
of tables, columns, and other referenced objects. Execute:
actual Oracle’s execution of the statement. This changes
the data for the Insert, Update, and Delete commands.
This identifies the selected rows in Select statements.
Fetch: Retrieves records from a query’s results.

Only SELECT statements with the following are
subject to fetches. Count of SQL trace statistics:
number of times the OCI procedure was executed,
CPU: CPU time in seconds executing, elapsed: elapsed
time in seconds executing, disc: number of physical
reads of buffers from disc, query: number of buffers
gotten for consistent read, current= number of buffers
gotten in current mode (usually for update), rows:
number of rows processed by the fetch or execute call.

I N V E S T I G AT I O N A L R E S U LT S

Table-1: Query Performance of SQL trace, tkprof and time statistics

Query
Plans

Optimizer
Hint

Cost Card Bytes Count CPU Elapsed Disk Query Throughput Rows Elapsed
Time

Plan1 H1 8 135 19845 6 0.00 0.04 8 55 2.8571429 45 00:00:00.35

Plan2 H2 8 135 19845 6 0.01 0.02 0 52 2.5 45 00:00:00.40
Plan3 H3 10 315 46305 6 0.00 0.35 0 8 1.8867925 45 00:00:00.53

Plan4 H4 8 135 19845 6 0.00 0.03 0 51 2.7027027 45 00:00:00.37

Plan5 H5 8 135 19845 6 0.01 0.00 0 51 2.8571429 45 00:00:00.35

Plan6 H6 8 135 19845 6 0.00 0.00 0 51 2 45 00:00:00.50

Plan7 H7 8 135 19845 6 0.01 0.00 0 51 2.7027027 45 00:00:00.37

Plan8 H8 8 135 19845 6 0.01 0.00 0 51 2.5641026 45 00:00:00.39

Table-2: Optimizer hint for Query plan1 to Queryplan8

Sr.
No

Optimizer
Hint

Description

1 H1 /*+ ALL_ROWS */
2 H2 /*+ PARALLEL(L, 2) */
3 H3 /*+ PARALLEL(B, 2) */
4 H4 /*+ PARALLEL_INDEX(B, 2) */
5 H5 /*+ FULL(ADDRESS_DTLS) PARALLEL(ADDRESS_DTLS, 5) */
6 H6 /*+ FULL(ADDRESS_DTLS) PARALLEL(ADDRESS_DTLS, DEFAULT) */
7 H7 /*+ NO_ PARALLEL(ADDRESS_DTLS) */
8 H8 /*+ PARALLEL_INDEX(ADDRESS_DTLS,INDEX1 , 3) */

Query Optimization in Object Oriented Database Using Cursor with Special Reference to Parallel Processing

305305SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

 60

50

40

30

20

Count

CPU

Elapsed

Disk

Query

Figure 5: Histogram of Tkprf output

The output of tkprof is shown in Table 1. We built
eight distinct query plants using algebraic transformations,
and for each plan, we used the proper optimizer
suggestion. After that, we used the SQL trace and tkprof
utilities to get SQL trace statistics. Our statistical results
reveal that as the optimizer suggestions change, query
cost, cardiacity, and number of bytes do not change
in seven of the eight plans, but they do in Plan 3. The
PARALLEL hint provides the desired number of
concurrent servers that can be employed for a parallel
operation, hence the cardinality and amount of bytes
are increased in plan3 /*+ PARALLEL (B, 2) */. The count
indicates how many times the Oracle Call Interface
procedure has been executed, parsed, or fetched. We
discovered that the count is the same for all of the plans.
All parse, execute, and fetch calls for the statement
are measured in seconds. If TIMED STATISTICS is not
enabled, this value is zero (0). Plan 5, 7, and 8 require
0.01 CPU time, whereas the rest of the plan requires
0.00. The total elapsed time for all parse, execute, and
fetch calls for the statement is measured in seconds.
If TIMED STATISTICS is not enabled, this value is zero
(0). Because plan 3 employs parallel hint, the elapsed
time for plan 3 is longer than the elapsed time for the
other plans. The overall disc size is the disc size.

The total number of buffers retrieved in consistent
mode for all parse, execute, and fetch calls is referred
to as the query. For queries, buffers are usually retrieved
in consistent mode. Buffers recovered for plans 1, 2,
and 3 have a higher value than buffers retrieved for
other plans. The total number of buffers retrieved in
current mode is called current. For statements like
Insert, Update, and Delete, buffers are retrieved in
current mode.

50000

40000

30000

20000

10000

Cost

Card

Bytes

0

Figure 7: Query performance histogram for time statistics

C O N C LU S I O N S

The optimization of queries is one of the most difficult
topics in Object-Oriented Databases. As a result of this
issue, object-oriented query optimization is exceedingly
difficult to achieve and is still in the research stage. This
research should make a substantial addition to the field
of Object Oriented Database Management. We can
deduce from the foregoing findings that query cost,
cardinality, and number of bytes remain unaffected,
however elapsed time and other tkprof factors change
once the cursor technique is implemented in an
object-oriented database.

R E F E R E N C E S

[1] Delobel,C and Cluet,S., “ A General Framework for
the optimization of Object-Oriented Queries”.
Proceedings of the ACM SIGMOD Conference, pp.
383-392,1992.

[2] A.Quarati and E.Bertino arid “An Approach to
Support Method Invocations in Object-Oriented
Queries “dipartimento di Matematica - Univeresita
di Genova.

[3] Amel Grissa-Touzi and Minyar Sassi, “Contribution
to the Query Optimization in the Object-Oriented
Databases” World Academy of Science, Engineering
and Technology 11 2005.

[4] B. Ding, S. Das, W. Wu, S. Chaudhuri, and V.
Narasayya. Plan stitch: Harnessing the best of many
plans. Proceedings of the VLDB Endowment,
11(10): 1123–1136, June 2018.

[5] Silberschatz A and Korth H. F. , “Database System
Concepts”, 5th edition, McGraw-Hill.

[6] David Taniar,Eric Pardede and Wenny Rahayu,,”
Object Oriented Oracle”,IRM press.

[7] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A.
Kemper. Learned Cardinalities: Estimating
Correlated Joins with Deep Learning. In 9th Biennial
Conference on Innovative Data Systems Research,
CIDR ’19, 2019.

Query Optimization in Object Oriented Database Using Cursor with Special Reference to Parallel Processing

306 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Special Issue 2 (2022)

[8] MySQL hints, https://dev.mysql.com/doc/refman/
8.0/en/serversystem- variables.html#sysvar
optimizer switch.

[9] Haridasa Acharya and Abhijit Banubakode “Query
Optimization In The Object Oriented Database
Using Nested Query”, Proc. 3rd International
Conference on Computer Modeling and Simulation
ICCMS 2011 January 7 - 9, 2011, Mumbai, India.

[10] Haridasa Acharya and Abhijit Banubakode “Query
Optimization in the Object-Oriented Database
Using Views”, Proc. International Conference On
Computing ICC 2010,NewDelhi 27-28 December
2010.

[11] Haridasa Acharya,and Abhijit Banubakode “Query
Optimization In The Object-oriented Database
Using Equi-join” Advances in Computational
Sciences and Technology Print: ISSN 0973-6107,
Online ISSN 0974-4738 Volume 4 Number 1 (2011)
pp. 83–94 © Research India Publications.

[12] Haridasa Acharya and Abhijit Banubakode “Query
Optimization on Compressed and Decompressed
Object- Oriented Database Using Operators”

International Journal on Computer Science and
Engineering (IJCSE) e-ISSN: 0975–3397 (online
version); Print ISSN:2229-5631 (Print version);

[13] Seema Kedar and Abhijit Banubakode “Query
Optimization in Compressed Database System”
International Conference on Advance Computing
(ICAC- 2008)” ACM Students Chapter Department
of Computer Science and Engineering Anuradha
Engineering College Chikhli-443 201, Maharashtra,
India [14] Ivan Bayross,SQL,PL/SQL The programming
language of oracle,BPB Publication.

[15] T. Neumann and G. Moerkotte, “An efficient
framework for order optimization,” in Proceedings
of the International Conference on Data
Engineering (ICDE), 2004.

[16] Antoshenkov, G. Dynamic Query Optimization in
Rdb/VMS, Proc. International Conference on Data
Engineering, Vienna, April 1993.

[17] Antoshenkov, G. Dynamic Optimization of Index
Scans Restricted by Booleans, Proc. International
Conference on Data Engineering, New Orleans,
February 1996.

Query Optimization in Object Oriented Database Using Cursor with Special Reference to Parallel Processing

