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I N T R O D U C T I O N

Recently, growth of fractional order differential
equations and integrals considerably reflected in
formulation and description of many physical problems
which are more beneficial than classical thermoelastic
perspective. As it is known that for different physical
situations microscopic level is quite essential but this
ignored during processing by the classical Fourier law.
The non-classical theory applied into the construction
of equation for heat conduction and further, it requires
thermoelastic model to improve the suitability of
equation. The article investigated various materials
and systems under different circumstances. The study
successfully proposed uncoupled quasi-static theory
of thermoelasticity with time-fraction derivative also
it interpolates classical theory and thermoelasticity
without energy dissipation as introduced by Green
and Naghdi.1-D and 2-D equations were examined
using Caputo derivative for fractional heat conduction
[1]. Povstenko [2] investigated theory of thermal
stresses with the Caputo time-fractional derivative of
order and he further, evaluated and examined the
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A B S T R AC T

Present paper investigated the thermoelastic response of an axisymmetric two-dimensional time fractional
thermoelastic problem. The order of the problem  is 20  which occupy the space

},0:),,{( 3 hzhbrRzyxD  . Further, convection type boundaries with heating )()( 01 rrtQ  and
)()( 02 rrtQ   are applied on the both surfaces respectively, whereas plate is subjected to the action of

internal heat is the linear function of temperature.  Next, integral transformation techniques are used to
calculate temperature, displacement and thermal stresses. The graphical method is used to analyze the
properties of Aluminum.
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thermal stresses in an infinite body with a circular
cylindrical hole by applying Laplace and Weber
integral transforms.

Caputo and Mainardi [3, 4]; Caputo [5], investigated
and analyzed the relationship between the fractional
derivative and theory of linear visco elasticity further
they shown that the fractional model shows good
agreement with experimental result. Povstenko [6] used
integral transform technique to determine temperature
distribution and thermal stresses in framework of
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uncoupled quasi-static uncoupled theory for an
infinite medium with a spherical cavity. Mondal [7]
used a vector-matrix differential equation in the Laplace
transform domain and Fourier series expansion
technique to develop a new theory of two-temperature
generalized thermoelasticity in the context of a
fractional order. Lata [8] found analytical solutions for
displacement components, stresses, conductive
temperature, temperature change and cubic dilatation
for a homogeneous isotropic thick circular plate in the
light of two temperature thermoelasticity theory in
frequency domain. Povstenko [9] used integral
transform technique to discuss effect of Robin
boundaries by considering mathematical symmetric
heat conduction equation of time-fractional order.
Youssef [10] proved uniqueness theorem for a newly
constructed fractional order thermoelasticity theory.
Ezzat and Bary[11] developed mathematical modelling
for perfect conducting materials within the context
of fractional magneto-thermoelastic theory.

Kumar and Khobragade [12, 13,14, 15] studied and
constructed mathematical modeling for various solid
bodies due to the action of partially distributed heat
supply and determined the thermal behaviour within
the context of fractional order theory of thermoelasticity.
Povstenko and Kyrylych[16] solved the fractional heat
conduction equation for an infinite solid by using
Laplace, Hankel and Fourier integral transforms with a
penny-shaped crack in the case of axial symmetry under
the prescribed heat flux loading at its surfaces.
Roychoudhuri and Dutta [17] analyzed the thermoelastic
interaction problem for an infinite solid with periodically
distributed heat sources. Shaw and Mukhopadhyay,
determined a thermoelastic problem of a functionally
graded micro elongated medium with a periodically
varying heat source[18].Very Recently, Lamba and
Kamdi, discussed thermal behaviour of an axisymmetric
problem of two-dimensional finite hollow cylinder with
the fractional order derivative in which physical
convection boundary conditions are assumed on the
curved surface of cylinder. Also applies the integral
transform method to analyses the temperature,
thermal stresses and displacement [19].

In this present paper we extended the work done
by Lamba et al. [19] to study thermoelastic response
of an axisymmetric two-dimensional time fractional
thermoelastic problem of a thick circular plate with

the fractional order derivative of order 0  and
boundary conditions were applied on upper and lower
surface respectively. Here thick plate is subject to internal
heat source, as heat is the linear function of the temperature.
Further for numerical calculations Aluminum metal plate
is considered and all the obtained results are depicted
graphically employing simulating methods.

M AT H E M A T I C A L  C O N S T R U C T I O N  O F

T H E  P R O B L E M

Let thickness of the thick circular plate is 2h with
radius r=b, occupy the space D= {(x,y,z) R3 : 0 
(x² +y²)1/2  bh z h}. Assume, circular plate is
subject to internal heat source, heat is the function
of temperature. Further, convection type boundaries
with heating Q1(t)(rr0) and Q2(t)(rr0) are
applied on the upper surface and lower surface resp.,
here  represent the Dirac delta function. The material
of the plate is assumed homogeneous and isotropic,
properties of material remain uniform. To construct
the above problem mathematically for nonlocal time
fractional derivative of order we follow the fractional
derivative of Caputo type as given by [20]
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with the Laplace transform method following as
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where; ‘s’ is transform parameter

Temperature distribution Function

By following [19], the governing transient heat
conduction equation in transient form in context of
Caputo type time fractional order parameter for a
thick circular plate subjected to internal heat
generation is given as follows
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Where  tzr ,,  denotes temperature distribution
function for the plate, )/(  t represents the time
fractional derivative of Caputo type with respect to
time t, also internal heat source function is denoted
here by ),,,( tzr  and ,/ C 

Where,   is thermal conductivity of material,

  is density of material

C  calorific capacity of the material.

By following [19], for sake of convenience we assume
),,,( tzr  as the superimposition of the following

simpler function given as

),,()(),,(),,,( tzrttzrtzr        (4)
and
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On using (4) to (7) in the equation of heat conduction
(3), we get
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Here   denotes the material's thermal diffusivity for
thick circular plate.

Boundary Conditions

Following [21], the corresponding initial and boundary
conditions for the assumed thermoelastic problem of
thick circular plate are given as
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Here, )( 0rr   and )( 0zz  are the Dirac Deltaa
function having br  00 , hzh  0  respectively;

)()( 01 rrtQ  and )()( 02 rrtQ   is the additional
sectional heat applied on both sides of the plate at

hhz  , ; also 1k and 2k  represents the thermal
conductivity coefficients. The equations (8) to (13)
represent the mathematical construction of the
problem with convective heat exchange boundary
conditions under contemplation.

M AT H E M AT I C A L  M O D E L I N G

Heat conduction Analysis (Transient)

by Appling Hankel transform and its inverse of ‘n’
order over the variable ‘r’ to the equation (8) shows
temperature distribution function under the
boundary condition (11) obtained equation (14).
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Where ),,(* tzT n  denotes the Hankel transform of
),,( tzrT  in the transformed domain.

Secondly, define the finite domain Marchi-Fasulo
integral transform of )(zT  in the range hzh 
as in [22] that corresponds to the boundary conditions
of type (12)-(13) as
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Where, ),( tmT  denotes the Marchi-Fasulo integral
transform of ),( tzT  in the transformed field, and the
core is given by the orthogonal functions in the
interval hzh   ass

),sin()cos()( zaWzaQzP mmmmm 

where

),cos()( 21 hakkaQ mmm 

),sin()()cos(2 12 haakkhaW mmmm 

][
2

)2sin(

][)(

22

222

mm
m

m

mm

h

h
mm

WQ
a

ha

WQhdzzP



 




The roots of characteristic equation are the eigen
values ma .




)]sin()[cos(
)]sin()cos([

2

1

ahakah
ahahak

)]sin()[cos(
)]sin()cos([

1

2

ahakah
ahahak




Applying the above defined transformation rules ((14)
and (15)) to equation (8) under the condition (11)-
(13), the following reduction is made
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corresponding inverse to the equation (16) by using
corresponding initial conditions defined in (17) and
(18) one obtains
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Next, by taking inverse of Marchi-Fasulo and Hankel
integral transform to the equation (19), one obtains
the temperature solution as
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Further, taking into account of the first equation (4),
the final temperature distribution function is shown by
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Hence, the equation (21) shows, the  temperature
distribution at each instant of time with fractional
order derivate of order   and over the thick circular
plate of fixed height when there are convection type
boundaries on both sides

Displacements and thermal stresses Formulation

The expression of the Navier’s equations in the absence
of body forces for the axisymmetric problem of two-
dimensional finite circular plate can be expressed [23]
as
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In equation (22) and (23), zu  and ru   represent the
displacement components along the axial and radial
direction respectively. The Dilatation e is expressed
as
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In cylindrical coordinate the radial and axial displacement
function are expressed in terms of thermoelastic Goodier’s
displacement potential ),,( tzr  and Michell’s function

M  as [23]
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Here thermoelastic Goodier’s potential function has
to satisfy the above equation.
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Where G is shear modulus and  is Poisson ratio. For
the traction free surface at inner and outer radii the
expression for rr  is

0
 brrzbrrr  (33)

The Solution of Displacements and thermal stresses

Equation (34) used to determine Goodier’s thermoelastic
displacement potential function  . The temperaturee
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distribution function given in equation (21) to the
equation (27) was used to generate equation (34)
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Likewise, assumed, solution of  Michell's function M
for equation (28) ;
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Next, to find the displacement components
expression, by using the   and M obtained from
equations (34), (35) and it is inserted to equations (25)
and (26) obtains equation (37)
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Thus, operating the two-displacement component,
the dilation is recognized as
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Next, the components of stresses are obtained by
substituting the values of   from equation (34) and M
from equation (35) in equation (29)-(32), one obtains
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S P EC I A L  C A S E
On Setting
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Putting the value of equation (44) into equations (21)
and (39) to (42), equation (45) determines the
temperature and stresses on the surfaces.
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N U M E R I C A L  C A L C U L AT I O N S

For the numerical computations, one can assume
material properties of Aluminum metal for a thick
circular plate with non-dimensional variables as shown
below:
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Modulus of Elasticity:E (dynes/cm2) = 6.9  1011,
Shear modulus:G (dynes/cm2) = 2.7  1011, Poisson
ratio: = 0.281, Coefficient of thermal expansion:
t(cm/cm-0C) = 25.5  10-6,

Thermal diffusivity,  (cm2/ s ) = 0.86,
Thermal conductivity,  (cal-cm/0C/sec/ cm2) = 0.48,
Outer radius, b (cm) = 3,
Thickness, h (cm) = 1, ,5.1 (cm)0 r 5.0 (cm)0 z

G R A P H I C A L  A N A LY S I S

 2,5.1,1,5.0   are the parameterss

for temperature and thermal stresses for fractional
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order. MATHEMATICA software used to obtain the
various stresses acted on the circular plate due to the
heat. Figure 1 to figure 5 shows the graphical
representation of the heat applied on the both sides of
the circular plated obtained from equation (45) to
equation (49). For considerable mathematical
simplicities in the foregoing analysis we set the
coefficients, 86.01 k  and 12 k .

Figure 1, demonstrated the temperature distribution
along the radius of the plate. The figure 1 shows the
optimum temperature at fraction order parameter of
value  α=1 against the other value of α=2, 1.5 and 0.5.
This is due to the increase in thickness of the plate.

Figure 2, displays optimal radial stresses at α = 1 and
found to be more at inner radius and lower at outer
radial edge and then terminated to zero at outer radial
ends. This is because of traction free boundary
conditions.

Figure 1: Temperature distribution along the radial direction

Figure 2: Radial stress distribution along the radial direction

Figure 3: Tangential stress distribution along the radial direction

Figure 4: Axial stress distribution along the radial direction

Figure 5: Shear stress distribution along the radial direction

Figure 3, 4 and 5, shows graphical representations of
the distribution of tangential, axial and shear stresses

along the radial stresses respectively for ,5.0
,1 ,5.1 and 2 .  Initially variation of

stresses found increases in the tangential, zero in axial
and decreases in shear case near to the inner region

Thermal Response of a Thick Circular Plate With Internal Heat Sourcesin Time Fractional Frame
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and then it becomes sinusoidal towards the outer
radii. But variation of the speed of propagation of the
thermal signals is found significantly different for the
different values of the fractional-order parameter
for all the tangential, axial and shear cases. Further,
prescribed mathematical traction free boundary
condition satisfies at the outer radial end.

C O N C L U S I O N

The mathematical model was developed to obtain the
temperature distribution along the circular plate using
the finite Hankel transform, finite Marchi-Fasulo and
Laplace transform methods. Also, convection type boundaries
with heating )()( 01 rrtQ  and )()( 02 rrtQ  on both
surfaces.

Proposed model satisfying the required conditions to
solve the thermoelastic problems of any kind by
fractional order derivatives. the model also being
useful for to examine the parameters like  thermal
conductivity, thermal stresses and the temperature
distribution along the any circular surfaces. This
article proposes new methodology for designing the
mathematical model for analysis of various kind of
surfaces for engineering applications.
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