
Ab s t r Ac t
Apache Spark has recently become the most popular big data analytics framework. Default configurations are provided by
Spark. HDFS stands for Hadoop Distributed File System. It means the large files will be physically stored on multiple nodes
in a distributed fashion. The block size determines how large files are distributed, while the replication factor determines
how reliable the files are. If there is just one copy of each block for a given file and the node fails, the data in the files become
unreadable. The block size and replication factor are configurable per file. The results and analysis of the experimental study
to determine the efficiency of adjusting the settings of tuning Apache Spark for minimizing application execution time
as compared to standard values are described in this paper. Based on a vast number of studies, we employed a trial-and-
error strategy to fine-tune these values. We chose two workloads to test the Apache framework for comparative analysis:
Wordcount and Terasort. We used the elapsed time to evaluate the same.
Keywords: Apache Spark, Big Data, Block size, HDFS, Replication Factor.
SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology (2022); DOI: 10.18090/samriddhi.v14i02.00

Performance Tuning Of Apache Spark Framework In
Big Data Processing with Respect To Block Size And
Replication Factor
Brijesh Y. Joshi, Poornashankar, Deepali Sawai
Institute for Industrial and Computer Management and Research, Pradhikaran, Pune, Maharashtra, India

Corresponding Author: Brijesh Y. Joshi, Institute for Industrial
and Computer Management and Research, Pradhikaran, Pune,
Maharashtra, India, e-mail: brijeshjoshi1@gmail.com
How to cite this article: Joshi, B.Y., Poornashankar, Sawai,
D. (2022). Performance Tuning Of Apache Spark Framework
In Big Data Processing with Respect To Block Size And
Replication Factor. SAMRIDDHI : A Journal of Physical Sciences,
Engineering and Technology, 14(2), 1-7.
Source of support: Nil
Conflict of interest: None

© The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

In t r o d u c t I o n

Big Data Analytics is critical to the company's overall success
and market penetration. Businesses can now process

massive volumes of data being consumed at exponential
rates thanks to technological breakthroughs and the
significant boost in computational power provided by High
Performance Distributed Computing. Mobile phones, IoT
devices, and other internet services are important sources of
raw data that must be churned to make sense of it. Various
mixes of big data To process enormous amounts of data,
Hadoop and other big data technologies are commonly
employed. Apache Hadoop, Cloudera, and Hortonworks are
of the Hadoop varieties available. Apache Spark is also used
to process large amounts of data.[12]

Spark is a data processing framework developed by
Apache. It can analyze large data sets. It also can distribute
data processing jobs among multiple machines. Apache
Spark is an open-source cluster-computing framework. Since
2010, Spark has been an open-source project. In 2009, Zahari
developed this project at UC Berkeley's AMPLab.[1] Batch
processing, real-time processing, interactive processing, and
graph processing are all supported by Apache Spark. It offers
in-memory processing as an alternative to storing data on a
hard disc drive. It's an example of a distributed computing
system in action. It's based on MapReduce algorithms from
Hadoop. It integrates the advantages of Hadoop MapReduce,

however unlike MapReduce, the input and output are stored
in memory, therefore the name Memory Computing. Its
performance is improved because of this. It is best suited
for iterative applications such as data mining and machine
learning. It is primarily concerned with increasing speed
while also ensuring reliability. It was designed specifically
for computations that need to be completed quickly. In
Apache Hadoop for map-reduce jobs, the centos operating
system showed better performance than Ubuntu and the
256MB block size observed to be the most suitable value.[10]
In Apache Hadoop, a data computing layer is MapReduce. It
enables the creation of applications for large datasets. On a
cluster, a MapReduce application runs. The map and reduce
functions are the most important parts of a MapReduce
program. The map function takes in key-value pairs as input

RESEARCH ARTICLE

SAMRIDDHI Volume 14, Issue 2, 2022 Print ISSN: 2229-7111 Online ISSN: 2454-5767

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022)2

and returns another set of key value pairs as output. The job
execution process is managed by the job tracker. Its primary
function is to coordinate all tasks that are running on the
task tracker.[11]

When Spark runs on the Hadoop cluster, RDDs will be
created on the HDFS in many formats supported by Hadoop,
likewise text and sequence files.[2]

The RDD is at the heart of the Spark Architecture concept.
It's an array of fault-tolerant components. It can execute in
parallel and allows the user to store data directly on the hard
disc as well as in memory. It's a distributed computing model
designed for large-scale, linearly scalable fault-tolerance
applications.

It performs memory processing by leveraging the RDD
data type. RDDs are a collection of partitioned and permanent
items created during the storing process. The labor in Spark
is separated into two categories: Master and Slaves. Slaves
are assigned tasks by the Master, who then reports back to
him. Such activities are conducted on RDDs and are divided
into two categories: transformations and actions. The tasks
are specified in transformation groups, and the execution
process is carried out as planned.

Transformations in Apache Spark are functions that take
an RDD as input and return one or more RDDs as output.
RDDs are immutable, which means they can't be changed.
It implements the computations and generates one or more
new RDDs. Transformations are treated as Lazy operations in
Apache Spark. When a process occurs, these generate one or
more RDDs that run. Transformation then uses the old dataset
to produce a new one.

The architecture of Apache Spark is seen in Figure 1. A
driver program (SparkContext), workers, often known as
executors, a cluster manager, and the HDFS are all part of
Apache Spark. Spark's main program is the driver program.
SparkContext is an object formed throughout the execution
of a Spark application and is in charge of the job's full
execution. The SparkContext object links to the cluster
manager, which manages the cluster's resources. Executors
are provided by cluster managers and are utilized to conduct
the logic and store the app data.[7]

LI t e r At u r e re v I e w
Spark is a general-purpose processing engine that works with
Hadoop data. It can process data in HDFS using any Hadoop
Input Format and can run in Hadoop clusters using YARN or
Spark's standalone mode. It's built to handle batch processing
much like MapReduce as well as new workloads like streaming,
interactive queries, and machine learning.[3] Apache Spark is an
open-source project that builds on top of the Hadoop Distributed
File System (HDFS). Spark, on the other hand, is not bound by the
two-stage MapReduce paradigm.[4] It’s critical to boost Spark's
execution performance for various application types, which can
be accomplished by optimizing a Spark job's physical execution
plan, efficiently scheduling parts of a Spark job on cluster nodes,
and choosing the right cluster configuration, such as the number of
machines (processors) and resources available on each machine. To
use Spark, programmers create a driver program that implements
their application's high-level control flow and launches several
processes in parallel. Spark offers two parallel programming
abstractions: resilient distributed datasets and parallel operations
on these datasets.[5]

Using an installed cluster in our lab, we compared the
performance of Hadoop and Spark. Based on a vast number
of studies, we employed a trial-and-error strategy to fine-
tune these values. We chose two workloads to examine
the frameworks for comparative analysis: WordCount and
Terasort.[6]

All of the benchmarks have the following parameters,
basic block size, number of blocks to be constructed, the
number of nodes in the cluster that are truly operational; the
number of cores per node in the cluster.[8]

when the data input size is equal, the FIFO scheduler
performs effectively. When data input sizes are unequal
and the first job is larger than the second, the Fair Scheduler
performs effectively. When data input sizes are mismatched
and the first job is smaller than the second, the FIFO scheduler
performs well.[9]

ex p e r I m e n tA L se t u p
To study the performance evaluation, we instantiated 3 nodes EC2
on AWS, each compute node was having 16GB RAM, 4 Cores, 1500
GB hard disk. Operating System was installed CentOS Linux release

Figure 1: Spark Architecture[7]

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022) 3

7.8.2003, Spark 1.6.0, Java 1.8.0. Elastic IP were used to establish
communication among the nodes Elapsed time the executor
spent running the task. The value of elapsed time is expressed
in milliseconds but we converted in seconds. Tuning parameters
in Apache Spark is a challenging task. We want to find out which
parameters can impact the elapsed time and we chose Block size
and replication factor.

ex p e r I m e n tA L re s u Lts
Table 1 and Figure 2 represent input data size 0.6GB, 128MB, 256
MB, 512 MB, 1024MB block size, and for each block size replication
factor 1,2,3 was set and WordCount program was executed on
Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 18sec.
• Elapsed time for combination 128MB, Replication factor

2 was observed 26sec.
• Elapsed time for combination 128MB, Replication factor

3 was observed 20 sec.
• Elapsed time for combination 256MB, Replication factor

1 was observed 13sec. Elapsed time for combination
256MB, Replication factor 2 was observed 11sec.

• Elapsed time for combination 256MB, Replication factor
3 was observed 11 sec.

• Elapsed time for combination 512MB, Replication factor 1
was observed 16sec. Elapsed time for combination 512MB,
Replication factor 2 was observed 12sec.

• Elapsed time for combination 512MB, Replication factor
3 was observed 19 sec.

• Elapsed time for combination 1024MB, Replication factor
1 was observed 16sec. Elapsed time for combination 1024
MB, Replication factor 2 was observed 12sec.

• Elapsed time for combination 1024 MB, Replication factor
3 was observed 19 sec.
Table 2 and Figure 3 represents for input data size 10GB,

128MB, 256 MB, 512 MB, 1024MB block size was and for each
block size replication factor 1,2,3 was set and WordCount
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 90sec.

Table 2: WordCount, Input Data size, Block Size, Replication
Factor and Elapsed time

Data size Block size Replication factor
Elapsed time
in Seconds

10GB

128MB

1 90

2 96

3 78

256MB

1 72

2 72

3 72

512MB

1 96

2 90

3 92

1024MB

1 102

2 90

3 90
Figure 2: Wordcount Input Data Size (0.6 GB) and Block Size

and Replication Factor Vs Elapsed Time

Table 1: WordCount, Input Data size, Block Size, Replication
factor and Elapsed time

Data size Block size Replication factor
Elapsed time
in Seconds

0.6GB

128MB

1 18

2 26

3 20

256MB

1 13

2 13

3 11

512MB

1 16

2 12

3 19

1024MB

1 17

2 17

3 14

Figure 3: Wordcount Input Data Size (10GB) and Block Size
and Replication factor vs Elapsed Time

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022)4

• Elapsed time for combination 128MB, Replication factor
2 was observed 96sec.

• Elapsed time for combination 128MB, Replication factor
3 was observed 78 sec.

• Elapsed time for combination 256MB, Replication factor
1 was observed 72sec.

• Elapsed time for combination 256MB, Replication factor
2 was observed 72sec.

• Elapsed time for combination 256MB, Replication factor
3 was observed 72sec.

• Elapsed time for combination 512MB, Replication factor
1 was observed 96sec.

• Elapsed time for combination 512MB, Replication factor
2 was observed 90sec.

• Elapsed time for combination 512MB, Replication factor
3 was observed 92sec.

• Elapsed time for combination 1024MB, Replication factor
1 was observed 102sec.

• Elapsed time for combination 1024 MB, Replication factor
2 was observed 90sec.

• Elapsed time for combination 1024 MB, Replication factor
3 was observed 90sec.
Table 3 and Figure 4 represents for input data size 100GB,

128MB, 256 MB, 512 MB, 1024MB block size was and for each
block size replication factor 1,2,3 was set and WordCount
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 458sec.
• Elapsed time for combination 128MB, Replication factor

2 was observed 438sec.
• Elapsed time for combination 128MB, Replication factor

3 was observed 414 sec.
• Elapsed time for combination 256MB, Replication factor

1 was observed 456sec.
• Elapsed time for combination 256MB, Replication factor

2 was observed 360sec.
• Elapsed time for combination 256MB, Replication factor

3 was observed 348sec.
• Elapsed time for combination 512MB, Replication factor

1 was observed 474sec.
• Elapsed time for combination 512MB, Replication factor

2 was observed 582sec.
• Elapsed time for combination 512MB, Replication factor

3 was observed 366sec.
• Elapsed time for combination 1024MB, Replication factor

1 was observed 462sec.
• Elapsed time for combination 1024 MB, Replication factor

2 was observed 366sec.
• Elapsed time for combination 1024 MB, Replication factor

3 was observed 372sec.
Table 4 and Figure 5 represents for input data size 0.6GB,

128MB, 256 MB, 512 MB, 1024MB block size was and for
each block size replication factor 1,2,3 was set and Terasort
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 97sec.

• Elapsed time for combination 128MB, Replication factor
2 was observed 101sec.

Table 4: Terasort, Input Data size, Block Size, Replication
factor and Elapsed time

Data Size Block Size Replication factor Elapsed Time in Sec

0.6 GB

128MB

1 97

2 101

3 99

256MB

1 89

2 89

3 87

512MB

1 108

2 106

3 103

1024MB

1 99

2 102

3 101

Figure 4: Wordcount Input Data Size (100GB) and Block
Size and Replication Factor Vs Elapsed Time

Table 3: WordCount, Input Data size, Block Size, Replication
Factor and Elapsed time

Data size Block size Replication factor
Elapsed time in
Seconds

100GB

128MB

1 458

2 438

3 414

256MB

1 456

2 360

3 348

512MB

1 474

2 582

3 366

1024MB

1 462

2 366

3 372

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022) 5

• Elapsed time for combination 128MB, Replication factor
3 was observed 99sec.

• Elapsed time for combination 256MB, Replication factor
1 was observed 89sec.

• Elapsed time for combination 256MB, Replication factor
2 was observed 89sec.

• Elapsed time for combination 256MB, Replication factor
3 was observed 87sec.

• Elapsed time for combination 512MB, Replication factor
1 was observed 108sec.

• Elapsed time for combination 512MB, Replication factor
2 was observed 106sec.

• Elapsed time for combination 512MB, Replication factor
3 was observed 106sec.

• Elapsed time for combination 1024MB, Replication factor
1 was observed 99sec.

• Elapsed time for combination 1024 MB, Replication factor
2 was observed 102sec.

• Elapsed time for combination 1024 MB, Replication factor
3 was observed 101sec.
Table 5 and Figure 6 represents for input data size 10GB,

128MB, 256 MB, 512 MB, 1024MB block size was and for
each block size replication factor 1,2,3 was set and Terasort
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 201sec.
• Elapsed time for combination 128MB, Replication factor

2 was observed 203sec.
• Elapsed time for combination 128MB, Replication factor

3 was observed 199sec.
• Elapsed time for combination 256MB, Replication factor

1 was observed 190sec.
• Elapsed time for combination 256MB, Replication factor

2 was observed 190sec.
• Elapsed time for combination 256MB, Replication factor

3 was observed 189sec.
• Elapsed time for combination 512MB, Replication factor

1 was observed 208sec.
• Elapsed time for combination 512MB, Replication factor

2 was observed 210sec.

• Elapsed time for combination 512MB, Replication factor
3 was observed 212sec.

• Elapsed time for combination 1024MB, Replication factor
1 was observed 219sec.

• Elapsed time for combination 1024 MB, Replication factor
2 was observed 217sec.

• Elapsed time for combination 1024 MB, Replication factor
3 was observed 215sec.
Table 6 and Figure 7 represents that for input data size

100GB, 128MB, 256MB, 512MB, 1024MB block size was and for
each block size replication factor 1,2, 3 was set and Terasort
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor

1 was observed 758sec.
• Elapsed time for combination 128MB, Replication factor

2 was observed 738sec.
• Elapsed time for combination 128MB, Replication factor

3 was observed 714sec.
• Elapsed time for combination 256MB, Replication factor

1 was observed 656sec.

Table 5: Terasort, Input Data size, Block Size, Replication
factor and Elapsed time

Data size Block size
Replication
factor

Elapsed time in
Seconds

10GB

128MB

1 201

2 203

3 199

256MB

1 190

2 190

3 189

512MB

1 208

2 210

3 212

1024MB

1 219

2 217

3 215
Figure 5: Terasort Input Data Size (0.6 GB) and Block Size

and Replication Factor Vs Elapsed Time

Figure 6: Terasort input data size (10 GB) and block size
and replication factor vs elapsed time

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022)6

• Elapsed time for combination 256MB, Replication factor
2 was observed 660sec.

• Elapsed time for combination 256MB, Replication factor
3 was observed 648sec.

• Elapsed time for combination 512MB, Replication factor
1 was observed 774sec.

• Elapsed time for combination 512MB, Replication factor
2 was observed 782sec.

• Elapsed time for combination 512MB, Replication factor
3 was observed 766sec.

• Elapsed time for combination 1024MB, Replication factor
1 was observed 762sec.

• Elapsed time for combination 1024MB, Replication factor
2 was observed 766sec.

• Elapsed time for combination 1024MB, Replication factor
3 was observed 772sec.

ob s e r vAt I o n s A n d FI n d I n g s
From Table 1 and Figure 2 it is observed that minimum
Elapsed time for WordCount job with input data size 0.6MB
was 11 seconds and it was for combination of block size

256MB and Replication Factor 3, Followed by that second
minimum Elapsed time was 12 secs for the combination of
block size 512MB and Replication factor 2. Maximum elapsed
time for WordCount job with input data size 0.6GB is 26 for
combination of block size 128MB and Replication factor 2.

From Table 2 and Figure 3 it is observed that minimum
Elapsed time for WordCount job with input data size 10GB
was 72 seconds and it was for combination of block size
256MB and Replication Factor 1, 256MB and Replication
Factor 2, 256MB and Replication Factor 3. Maximum elapsed
time for WordCount job with input data size 10 GB is 102sec
for combination of block size 1024MB and Replication factor 1.

From Table 3 and Figure 4 it is observed that minimum
Elapsed time for WordCount job with input data size 100GB
was 348 seconds and it was for combination of block size
256MB and Replication Factor 3. Maximum elapsed time
for WordCount job with input data size 100 GB is 582sec for
combination of block size 512MB and Replication factor 2.

From Table 4 and Figure 5 it is observed that minimum
Elapsed time for Terasort job with input data size 0.6GB was 87
seconds and it was for combination of block size 256MB and
Replication Factor 3, Maximum elapsed time for WordCount
job with input data size 0.6GB is 108 for combination of block
size 512MB and Replication factor 1.

From Table 5 and Figure 6 it is observed that minimum
Elapsed time for Terasort job with input data size 10GB was
189 seconds and it was for combination of block size 256MB
and Replication Factor 3 followed by that second minimum
elapsed time 190 sec for 256 MB and Replication factor 1 and
Replication 2, Maximum elapsed time for WordCount job
with input data size 0.6GB is 219 for combination of block
size 512MB and Replication factor 1.

From Table 6 and Figure 7 it is observed that minimum
Elapsed time for Terasort job with input data size 100GB
was 648seconds and it was for combination of block size
256MB and Replication Factor 3, Maximum elapsed time
for WordCount job with input data size 100GB is 782 for
combination of block size 512MB and Replication factor 2.

co n c Lu s I o n
We focused mainly on the two hdfs parameters such as block size
and replication factor in this research work. In this empirical study
we executed Wordcount and Terasort jobs with varying input data
for combination of 128MB and Replication factor 1, Replication
factor 2, Replication factor, 256MB and Replication factor 1,
Replication factor 2, Replication factor, 512MB and Replication factor
1, Replication factor 2, Replication factor, 1024MB and Replication
factor 1, Replication factor 3, Replication factor. We conclude that
for Wordcount job for input data size 0.6GB minimum elapsed time
for block size 256 MB and replication factor 3, for input data size
10GB minimum elapsed time for block size 256MB and replication
factor 1,2,3, for input data size 100GB minimum elapsed time for
block size 256MB and replication factor 3. For Terasort job input
data size 0.6GB minimum elapsed time for block size 256 MB and
replication factor 3. For Terasort job input data size 10GB minimum
elapsed time for block size 256MB and replication factor 3 and for
Terasort job 100GB minimum elapsed time for block size 256MB

Figure 7: Terasort input data size (100 gb) and block size
and replication factor vs elapsed time

Table 6: Terasort, Input Data size, Block Size, Replication
Factor and Elapsed time

Data Size Block Size Replication Factor Elapsed Time in Sec

100GB

128MB

1 758

2 738

3 714

256MB

1 656

2 660

3 648

512MB

1 774

2 782

3 766

1024MB

1 762

2 766

3 772

Performance Tuning of Apache Spark Framework

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 2 (2022) 7

and replication factor 3. Hence, the final conclusion drawn that
the optimum combination for block size and replication factor to
execute WordCount and Terasort jobs at minimum elapsed time
is 256MB and replication factor 3 in turn, it can be concluded that
minimum elapsed time represents the better performance.

sco p e o F Fu t u r e wo r k
In this research work we executed the WordCount and Terasort
benchmarking programs on AWS Cluster and Input Data Size was
taken into consideration was 0.6GB, 10GB,100GB in short we did
empirical study on Input data size in terms of MB and GB, further
empirical study can be by giving input in terms of GB, TB, PB and
check the optimum values of the considered parameters and further
the elapsed time prediction model can be developed.

re F e r e n c e s
[1] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mccauley M,

Franklin M, Shenker S, Stoica I.(2012), Fast and interactive
analytics over hadoop data with spark, Usenix Login.; 37:45–51.

[2] Kannan P. (2015) , Beyond hadoop mapreduce apache tez and
apache spark, San Jose State University, http://www.sjsu.edu/
people/robert.chun/courses/CS259Fall2013/s3/F.pdf.

[3] Spark.apache.org, 2021. [Online]. Available: https://spark.
apache.org/

[4] Apache Spark with Hadoop – Why it Matters? | Edureka.
co, Edureka, (2021) [Online].

[5] Zaharia, M., Chowdhury M., Franklin M. J., Shenker S. J.,
& Stoica I.,(2010), Spark: Cluster Computing with working Sets,
In: Proceedings of the 2nd USENIX Conference on Hot Topics

in Cloud Computing (HotCloud), pp. 1-7, https://www.icsi.
berkeley.edu/icsi/node/5074

[6] N. Ahmed, A. Barczak, T. Susnjak and M. Rashid,(2020), A
comprehensive performance analysis of Apache Hadoop and
Apache Spark for large scale data sets using HiBench, Journal of
Big Data, vol. 7, no. 1.

[7] Apache Spark™ - Unif ied Engine for large-scale data
analytics, Spark.apache.org, (2021) [Online]. Available: http://
spark.apache.org/

[8] G. Thiruvathukal, C. Christensen, X. Jin, F. Tessier and V.
Vishwanath,(2021) , A Benchmarking Study to Evaluate Apache
Spark on Large-Scale Supercomputers Arxiv.org, [Online].
Available: https://arxiv.org/pdf/1904.11812.pdf

[9] Brijesh Y. Joshi, Dr. Poornashankar,(2021), Performance
Evaluation of Apache Spark Framework in Big Data Processing
with Respect to Scheduling Algorithms in Multiuser Environment,
Journal of the Maharaja Sayajirao University of Baroda, ISSN:
0025-0422, Volume-55, No.2

[10] M. Y. J. Dr. Poornashankar,(2021), Performance Tuning of Apache
Hadoop Framework in Big Data Processing with Respect to Block
Size, Operating System Clusters and Map Reduce Techniques, DE,
pp. 5766- 5778

[11] Joshi B., Dr. Poornashankar,(2020),HADOOP Performance
Evaluation with respect to Scheduling Algorithms in Multiuser
Environment, Vol50issue11 – Pensee.Penseeresearch.com. http://
penseeresearch.com/index.php/volume50issue11/.

[12] Brijesh Y. Joshi, Dr. Poornashankar, (2018), A Study of usage of Big
Data Processing technologies and sectorial analysis in Industries
of Pune Region, Journal of Applied Science and Computations,
ISSN NO 1076-5131.

https://www.icsi.berkeley.edu/icsi/biblio?f%5Bauthor%5D=2305
https://www.icsi.berkeley.edu/icsi/biblio?f%5Bauthor%5D=2509
https://www.icsi.berkeley.edu/icsi/biblio?f%5Bauthor%5D=2513
https://www.icsi.berkeley.edu/icsi/biblio?f%5Bauthor%5D=3897
https://www.icsi.berkeley.edu/icsi/biblio?f%5Bauthor%5D=29

