
Ab s t r Ac t
Apache Spark has recently become the most popular big data analytics framework. Default configurations are provided by 
Spark. HDFS stands for Hadoop Distributed File System. It means the large files will be physically stored on multiple nodes 
in a distributed fashion. The block size determines how large files are distributed, while the replication factor determines 
how reliable the files are. If there is just one copy of each block for a given file and the node fails, the data in the files become 
unreadable. The block size and replication factor are configurable per file. The results and analysis of the experimental study 
to determine the efficiency of adjusting the settings of tuning Apache Spark for minimizing application execution time 
as compared to standard values are described in this paper. Based on a vast number of studies, we employed a trial-and-
error strategy to fine-tune these values. We chose two workloads to test the Apache framework for comparative analysis: 
Wordcount and Terasort. We used the elapsed time to evaluate the same.
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In t r o d u c t I o n

Big Data Analytics is critical to the company's overall success 
and market penetration. Businesses can now process 

massive volumes of data being consumed at exponential 
rates thanks to technological breakthroughs and the 
significant boost in computational power provided by High 
Performance Distributed Computing. Mobile phones, IoT 
devices, and other internet services are important sources of 
raw data that must be churned to make sense of it. Various 
mixes of big data To process enormous amounts of data, 
Hadoop and other big data technologies are commonly 
employed. Apache Hadoop, Cloudera, and Hortonworks are 
of the Hadoop varieties available. Apache Spark is also used 
to process large amounts of data.[12]

Spark is a data processing framework developed by 
Apache. It can analyze large data sets. It also can distribute 
data processing jobs among multiple machines. Apache 
Spark is an open-source cluster-computing framework. Since 
2010, Spark has been an open-source project. In 2009, Zahari 
developed this project at UC Berkeley's AMPLab.[1] Batch 
processing, real-time processing, interactive processing, and 
graph processing are all supported by Apache Spark. It offers 
in-memory processing as an alternative to storing data on a 
hard disc drive. It's an example of a distributed computing 
system in action. It's based on MapReduce algorithms from 
Hadoop. It integrates the advantages of Hadoop MapReduce, 

however unlike MapReduce, the input and output are stored 
in memory, therefore the name Memory Computing. Its 
performance is improved because of this. It is best suited 
for iterative applications such as data mining and machine 
learning. It is primarily concerned with increasing speed 
while also ensuring reliability. It was designed specifically 
for computations that need to be completed quickly. In 
Apache Hadoop for map-reduce jobs, the centos operating 
system showed better performance than Ubuntu and the 
256MB block size observed to be the most suitable value.[10] 
In Apache Hadoop, a data computing layer is MapReduce. It 
enables the creation of applications for large datasets. On a 
cluster, a MapReduce application runs. The map and reduce 
functions are the most important parts of a MapReduce 
program. The map function takes in key-value pairs as input 
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and returns another set of key value pairs as output. The job 
execution process is managed by the job tracker. Its primary 
function is to coordinate all tasks that are running on the 
task tracker.[11]

When Spark runs on the Hadoop cluster, RDDs will be 
created on the HDFS in many formats supported by Hadoop, 
likewise text and sequence files.[2]

The RDD is at the heart of the Spark Architecture concept. 
It's an array of fault-tolerant components. It can execute in 
parallel and allows the user to store data directly on the hard 
disc as well as in memory. It's a distributed computing model 
designed for large-scale, linearly scalable fault-tolerance 
applications.

It performs memory processing by leveraging the RDD 
data type. RDDs are a collection of partitioned and permanent 
items created during the storing process. The labor in Spark 
is separated into two categories: Master and Slaves. Slaves 
are assigned tasks by the Master, who then reports back to 
him. Such activities are conducted on RDDs and are divided 
into two categories: transformations and actions. The tasks 
are specified in transformation groups, and the execution 
process is carried out as planned.

Transformations in Apache Spark are functions that take 
an RDD as input and return one or more RDDs as output. 
RDDs are immutable, which means they can't be changed. 
It implements the computations and generates one or more 
new RDDs. Transformations are treated as Lazy operations in 
Apache Spark. When a process occurs, these generate one or 
more RDDs that run. Transformation then uses the old dataset 
to produce a new one.

The architecture of Apache Spark is seen in Figure 1. A 
driver program (SparkContext), workers, often known as 
executors, a cluster manager, and the HDFS are all part of 
Apache Spark. Spark's main program is the driver program. 
SparkContext is an object formed throughout the execution 
of a Spark application and is in charge of the job's full 
execution. The SparkContext object links to the cluster 
manager, which manages the cluster's resources. Executors 
are provided by cluster managers and are utilized to conduct 
the logic and store the app data.[7]

LI t e r At u r e re v I e w 
Spark is a general-purpose processing engine that works with 
Hadoop data. It can process data in HDFS using any Hadoop 
Input Format and can run in Hadoop clusters using YARN or 
Spark's standalone mode. It's built to handle batch processing 
much like MapReduce as well as new workloads like streaming, 
interactive queries, and machine learning.[3] Apache Spark is an 
open-source project that builds on top of the Hadoop Distributed 
File System (HDFS). Spark, on the other hand, is not bound by the 
two-stage MapReduce paradigm.[4] It’s critical to boost Spark's 
execution performance for various application types, which can 
be accomplished by optimizing a Spark job's physical execution 
plan, efficiently scheduling parts of a Spark job on cluster nodes, 
and choosing the right cluster configuration, such as the number of 
machines (processors) and resources available on each machine. To 
use Spark, programmers create a driver program that implements 
their application's high-level control flow and launches several 
processes in parallel. Spark offers two parallel programming 
abstractions: resilient distributed datasets and parallel operations 
on these datasets.[5]

Using an installed cluster in our lab, we compared the 
performance of Hadoop and Spark. Based on a vast number 
of studies, we employed a trial-and-error strategy to fine-
tune these values. We chose two workloads to examine 
the frameworks for comparative analysis: WordCount and 
Terasort.[6]

All of the benchmarks have the following parameters, 
basic block size, number of blocks to be constructed, the 
number of nodes in the cluster that are truly operational; the 
number of cores per node in the cluster.[8]

when the data input size is equal, the FIFO scheduler 
performs effectively. When data input sizes are unequal 
and the first job is larger than the second, the Fair Scheduler 
performs effectively. When data input sizes are mismatched 
and the first job is smaller than the second, the FIFO scheduler 
performs well.[9]

ex p e r I m e n tA L se t u p 
To study the performance evaluation, we instantiated 3 nodes EC2 
on AWS, each compute node was having 16GB RAM, 4 Cores, 1500 
GB hard disk. Operating System was installed CentOS Linux release 

Figure 1: Spark Architecture[7]
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7.8.2003, Spark 1.6.0, Java 1.8.0. Elastic IP were used to establish 
communication among the nodes Elapsed time the executor 
spent running the task. The value of elapsed time is expressed 
in milliseconds but we converted in seconds. Tuning parameters 
in Apache Spark is a challenging task. We want to find out which 
parameters can impact the elapsed time and we chose Block size 
and replication factor.

ex p e r I m e n tA L re s u Lts 
Table 1 and Figure 2 represent input data size 0.6GB, 128MB, 256 
MB, 512 MB, 1024MB block size, and for each block size replication 
factor 1,2,3 was set and WordCount program was executed on 
Apache Spark.
• Elapsed time for combination 128MB, Replication factor 

1 was observed 18sec.
• Elapsed time for combination 128MB, Replication factor 

2 was observed 26sec.
• Elapsed time for combination 128MB, Replication factor 

3 was observed 20 sec.
• Elapsed time for combination 256MB, Replication factor 

1 was observed 13sec. Elapsed time for combination 
256MB, Replication factor 2 was observed 11sec.

• Elapsed time for combination 256MB, Replication factor 
3 was observed 11 sec.

• Elapsed time for combination 512MB, Replication factor 1 
was observed 16sec. Elapsed time for combination 512MB, 
Replication factor 2 was observed 12sec.

• Elapsed time for combination 512MB, Replication factor 
3 was observed 19 sec.

• Elapsed time for combination 1024MB, Replication factor 
1 was observed 16sec. Elapsed time for combination 1024 
MB, Replication factor 2 was observed 12sec.

• Elapsed time for combination 1024 MB, Replication factor 
3 was observed 19 sec.
Table 2 and Figure 3 represents for input data size 10GB, 

128MB, 256 MB, 512 MB, 1024MB block size was and for each 
block size replication factor 1,2,3 was set and WordCount 
program was executed on Apache Spark. 
• Elapsed time for combination 128MB, Replication factor 

1 was observed 90sec.

Table 2: WordCount, Input Data size, Block Size, Replication 
Factor and Elapsed time

Data size Block size Replication factor
Elapsed time 
in Seconds

10GB

128MB

1 90

2 96

3 78

256MB

1 72

2 72

3 72

512MB

1 96

2 90

3 92

1024MB

1 102

2 90

3 90
Figure 2: Wordcount Input Data Size (0.6 GB) and Block Size 

and Replication Factor Vs Elapsed Time

Table 1: WordCount, Input Data size, Block Size, Replication 
factor and Elapsed time

Data size Block size Replication factor
Elapsed time 
in Seconds

0.6GB

128MB

1 18

2 26

3 20

256MB

1 13

2 13

3 11

512MB

1 16

2 12

3 19

1024MB

1 17

2 17

3 14

Figure 3: Wordcount Input Data Size (10GB) and Block Size 
and Replication factor vs Elapsed Time
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• Elapsed time for combination 128MB, Replication factor 
2 was observed 96sec.

• Elapsed time for combination 128MB, Replication factor 
3 was observed 78 sec.

• Elapsed time for combination 256MB, Replication factor 
1 was observed 72sec. 

• Elapsed time for combination 256MB, Replication factor 
2 was observed 72sec.

• Elapsed time for combination 256MB, Replication factor 
3 was observed 72sec.

• Elapsed time for combination 512MB, Replication factor 
1 was observed 96sec. 

• Elapsed time for combination 512MB, Replication factor 
2 was observed 90sec.

• Elapsed time for combination 512MB, Replication factor 
3 was observed 92sec.

• Elapsed time for combination 1024MB, Replication factor 
1 was observed 102sec. 

• Elapsed time for combination 1024 MB, Replication factor 
2 was observed 90sec.

• Elapsed time for combination 1024 MB, Replication factor 
3 was observed 90sec.
Table 3 and Figure 4 represents for input data size 100GB, 

128MB, 256 MB, 512 MB, 1024MB block size was and for each 
block size replication factor 1,2,3 was set and WordCount 
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor 

1 was observed 458sec.
• Elapsed time for combination 128MB, Replication factor 

2 was observed 438sec.
• Elapsed time for combination 128MB, Replication factor 

3 was observed 414 sec.
• Elapsed time for combination 256MB, Replication factor 

1 was observed 456sec.
• Elapsed time for combination 256MB, Replication factor 

2 was observed 360sec.
• Elapsed time for combination 256MB, Replication factor 

3 was observed 348sec.
• Elapsed time for combination 512MB, Replication factor 

1 was observed 474sec.
• Elapsed time for combination 512MB, Replication factor 

2 was observed 582sec.
• Elapsed time for combination 512MB, Replication factor 

3 was observed 366sec.
• Elapsed time for combination 1024MB, Replication factor 

1 was observed 462sec.
• Elapsed time for combination 1024 MB, Replication factor 

2 was observed 366sec.
• Elapsed time for combination 1024 MB, Replication factor 

3 was observed 372sec.
Table 4 and Figure 5 represents for input data size 0.6GB, 

128MB, 256 MB, 512 MB, 1024MB block size was and for 
each block size replication factor 1,2,3 was set and Terasort 
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor 

1 was observed 97sec.

• Elapsed time for combination 128MB, Replication factor 
2 was observed 101sec.

Table 4: Terasort, Input Data size, Block Size, Replication 
factor and Elapsed time

Data Size Block Size Replication factor Elapsed Time in Sec

0.6 GB

128MB

1 97

2 101

3 99

256MB

1 89

2 89

3 87

512MB

1 108

2 106

3 103

1024MB

1 99

2 102

3 101

Figure 4: Wordcount Input Data Size (100GB) and Block 
Size and Replication Factor Vs Elapsed Time

Table 3: WordCount, Input Data size, Block Size, Replication 
Factor and Elapsed time

Data size Block size Replication factor
Elapsed time in 
Seconds

100GB

128MB

1 458

2 438

3 414

256MB

1 456

2 360

3 348

512MB

1 474

2 582

3 366

1024MB

1 462

2 366

3 372
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• Elapsed time for combination 128MB, Replication factor 
3 was observed 99sec.

• Elapsed time for combination 256MB, Replication factor 
1 was observed 89sec.

• Elapsed time for combination 256MB, Replication factor 
2 was observed 89sec.

• Elapsed time for combination 256MB, Replication factor 
3 was observed 87sec.

• Elapsed time for combination 512MB, Replication factor 
1 was observed 108sec.

• Elapsed time for combination 512MB, Replication factor 
2 was observed 106sec.

• Elapsed time for combination 512MB, Replication factor 
3 was observed 106sec.

• Elapsed time for combination 1024MB, Replication factor 
1 was observed 99sec.

• Elapsed time for combination 1024 MB, Replication factor 
2 was observed 102sec.

• Elapsed time for combination 1024 MB, Replication factor 
3 was observed 101sec.
Table 5 and Figure 6 represents for input data size 10GB, 

128MB, 256 MB, 512 MB, 1024MB block size was and for 
each block size replication factor 1,2,3 was set and Terasort 
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor 

1 was observed 201sec.
• Elapsed time for combination 128MB, Replication factor 

2 was observed 203sec.
• Elapsed time for combination 128MB, Replication factor 

3 was observed 199sec.
• Elapsed time for combination 256MB, Replication factor 

1 was observed 190sec.
• Elapsed time for combination 256MB, Replication factor 

2 was observed 190sec.
• Elapsed time for combination 256MB, Replication factor 

3 was observed 189sec.
• Elapsed time for combination 512MB, Replication factor 

1 was observed 208sec.
• Elapsed time for combination 512MB, Replication factor 

2 was observed 210sec.

• Elapsed time for combination 512MB, Replication factor 
3 was observed 212sec.

• Elapsed time for combination 1024MB, Replication factor 
1 was observed 219sec.

• Elapsed time for combination 1024 MB, Replication factor 
2 was observed 217sec.

• Elapsed time for combination 1024 MB, Replication factor 
3 was observed 215sec.
Table 6 and Figure 7 represents that for input data size 

100GB, 128MB, 256MB, 512MB, 1024MB block size was and for 
each block size replication factor 1,2, 3 was set and Terasort 
program was executed on Apache Spark.
• Elapsed time for combination 128MB, Replication factor 

1 was observed 758sec. 
• Elapsed time for combination 128MB, Replication factor 

2 was observed 738sec.
• Elapsed time for combination 128MB, Replication factor 

3 was observed 714sec.
• Elapsed time for combination 256MB, Replication factor 

1 was observed 656sec. 

Table 5: Terasort, Input Data size, Block Size, Replication 
factor and Elapsed time

Data size Block size
Replication 
factor

Elapsed time in 
Seconds

10GB

128MB

1 201

2 203

3 199

256MB

1 190

2 190

3 189

512MB

1 208

2 210

3 212

1024MB

1 219

2 217

3 215
Figure 5: Terasort Input Data Size (0.6 GB) and Block Size 

and Replication Factor Vs Elapsed Time

Figure 6: Terasort input data size (10 GB) and block size 
and replication factor vs elapsed time
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• Elapsed time for combination 256MB, Replication factor 
2 was observed 660sec. 

• Elapsed time for combination 256MB, Replication factor 
3 was observed 648sec.

• Elapsed time for combination 512MB, Replication factor 
1 was observed 774sec.

• Elapsed time for combination 512MB, Replication factor 
2 was observed 782sec. 

• Elapsed time for combination 512MB, Replication factor 
3 was observed 766sec.

• Elapsed time for combination 1024MB, Replication factor 
1 was observed 762sec.

• Elapsed time for combination 1024MB, Replication factor 
2 was observed 766sec.

• Elapsed time for combination 1024MB, Replication factor 
3 was observed 772sec.

ob s e r vAt I o n s A n d FI n d I n g s 
From Table 1 and Figure 2 it is observed that minimum 
Elapsed time for WordCount job with input data size 0.6MB 
was 11 seconds and it was for combination of block size 

256MB and Replication Factor 3, Followed by that second 
minimum Elapsed time was 12 secs for the combination of 
block size 512MB and Replication factor 2. Maximum elapsed 
time for WordCount job with input data size 0.6GB is 26 for 
combination of block size 128MB and Replication factor 2. 

From Table 2 and Figure 3 it is observed that minimum 
Elapsed time for WordCount job with input data size 10GB 
was 72 seconds and it was for combination of block size 
256MB and Replication Factor 1, 256MB and Replication 
Factor 2, 256MB and Replication Factor 3. Maximum elapsed 
time for WordCount job with input data size 10 GB is 102sec 
for combination of block size 1024MB and Replication factor 1. 

From Table 3 and Figure 4 it is observed that minimum 
Elapsed time for WordCount job with input data size 100GB 
was 348 seconds and it was for combination of block size 
256MB and Replication Factor 3. Maximum elapsed time 
for WordCount job with input data size 100 GB is 582sec for 
combination of block size 512MB and Replication factor 2. 

From Table 4 and Figure 5 it is observed that minimum 
Elapsed time for Terasort job with input data size 0.6GB was 87 
seconds and it was for combination of block size 256MB and 
Replication Factor 3, Maximum elapsed time for WordCount 
job with input data size 0.6GB is 108 for combination of block 
size 512MB and Replication factor 1. 

From Table 5 and Figure 6 it is observed that minimum 
Elapsed time for Terasort job with input data size 10GB was 
189 seconds and it was for combination of block size 256MB 
and Replication Factor 3 followed by that second minimum 
elapsed time 190 sec for 256 MB and Replication factor 1 and 
Replication 2, Maximum elapsed time for WordCount job 
with input data size 0.6GB is 219 for combination of block 
size 512MB and Replication factor 1. 

From Table 6 and Figure 7 it is observed that minimum 
Elapsed time for Terasort job with input data size 100GB 
was 648seconds and it was for combination of block size 
256MB and Replication Factor 3, Maximum elapsed time 
for WordCount job with input data size 100GB is 782 for 
combination of block size 512MB and Replication factor 2. 

co n c Lu s I o n
We focused mainly on the two hdfs parameters such as block size 
and replication factor in this research work. In this empirical study 
we executed Wordcount and Terasort jobs with varying input data 
for combination of 128MB and Replication factor 1, Replication 
factor 2, Replication factor, 256MB and Replication factor 1, 
Replication factor 2, Replication factor, 512MB and Replication factor 
1, Replication factor 2, Replication factor, 1024MB and Replication 
factor 1, Replication factor 3, Replication factor. We conclude that 
for Wordcount job for input data size 0.6GB minimum elapsed time 
for block size 256 MB and replication factor 3, for input data size 
10GB minimum elapsed time for block size 256MB and replication 
factor 1,2,3, for input data size 100GB minimum elapsed time for 
block size 256MB and replication factor 3. For Terasort job input 
data size 0.6GB minimum elapsed time for block size 256 MB and 
replication factor 3. For Terasort job input data size 10GB minimum 
elapsed time for block size 256MB and replication factor 3 and for 
Terasort job 100GB minimum elapsed time for block size 256MB 

Figure 7: Terasort input data size (100 gb) and block size 
and replication factor vs elapsed time

Table 6: Terasort, Input Data size, Block Size, Replication 
Factor and Elapsed time

Data Size Block Size Replication Factor Elapsed Time in Sec

100GB

128MB

1 758

2 738

3 714

256MB

1 656

2 660

3 648

512MB

1 774

2 782

3 766

1024MB

1 762

2 766

3 772
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and replication factor 3. Hence, the final conclusion drawn that 
the optimum combination for block size and replication factor to 
execute WordCount and Terasort jobs at minimum elapsed time 
is 256MB and replication factor 3 in turn, it can be concluded that 
minimum elapsed time represents the better performance.

sco p e o F Fu t u r e wo r k 
In this research work we executed the WordCount and Terasort 
benchmarking programs on AWS Cluster and Input Data Size was 
taken into consideration was 0.6GB, 10GB,100GB in short we did 
empirical study on Input data size in terms of MB and GB, further 
empirical study can be by giving input in terms of GB, TB, PB and 
check the optimum values of the considered parameters and further 
the elapsed time prediction model can be developed.
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