Evaluation of Creep Life Prediction Models for Low Alloy Creep Resistance Steel Grade 22 (2.25Cr-1Mo) using Short-term Creep Test

Vijay Jadhav^{1*}, Nagesh Kinir¹, Anand Bewoor²

¹Department of Technology, University of Pune, Maharashtra, India

²Department of Mechanical Engineering, Cummins College of Engineering for Women, Pune, Maharashtra, India

Abstract

Traditional Power Law equations and modern creep equations were evaluated to estimate long term creep life of Grade 22 material. Evaluation of models made on a short-term database for predicting its capacity of precise long-term creep life. Linear trend line curve fitting method used for extrapolation of data for long-term creep life. Open SourceNRIM creep rupture data for Grade 22tube in annealed/tempered condition and plates in quenched/tempered plates used in this evaluation. This evaluation is helpful for power plant industries for selecting an economically viable and precise model. **Keywords:** Creep, Creepmodels, Long-term creep, Stressrupture.

SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology (2022); DOI: 10.18090/samriddhi.v14i02.3

INTRODUCTION

High-temperature components such as tubes, plates, piping's and headers in boilers and Petrochemicals plants are made of low alloy steel. These components are normally designed for creep life of @ 250,000 hours. All such components sometimes may experience change in operating conditions. This change in operating conditions influences its creep life. Forreasonsofeconomy and CO_2 emissions, it becomes necessary to predict the remaining life accurately. Since the last sixty years, many attempts have been made to formulate procedures that can estimate creep life based on short-term testing.

This paper evaluates the different creep models for their capability to predict long term creep life

based on short-term test data. Models that can predict precise life in short-term tests are the prime necessities of boiler industries to plan their maintenance activities. Evaluation of models made using the National Institute of Materials Science (NIMS) creep dataGrade 22 Steel (2.25Cr-1Mo) [1, 2, 3]. It is to be noted that this paper is not an exhaustive comparison of all possible creep models. Rather, it is an overview and evaluation of the most commonly employed creep models.

MATERIAL

NIMS Creep data for Grade 22 is used to evaluate creep models. For over half a century, grade 22 (2.25Cr-1Mo) steels have been extensively used in boilers for headers and piping

Corresponding Author: Vijay Jadhav, Department of Technology, University of Pune, Maharashtra, India, e-mail: vljadhav2009@gmail.com

How to cite this article: Jadhav, V., Kinir, N., Bewoor, A. (2022). Evaluation of Creep Life Prediction Models for Low Alloy Creep Resistance Steel Grade 22 (2.25Cr-1Mo) using Short-term Creep Test. *SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology*, 14(2), 143-151.

Source of support: Nil

Conflict of interest: None

and tubing. Open source creep data at various temperatures and stress is already available. It can help to check the accuracy of extrapolation made from short-term data for long-term creep life. National Institute for Materials Science (NIMS), Japan, has various sets creep data for 2.25Cr-1Mo steels at different heat treatment conditions, such as -

- a) Plate for
 - i. Pressure vessels in quenched and tempered condition,^[1]
 ii. Boilerandpressurevessels in normalized and tempered condition^[2] and
- b) Tubes for boilers and heat exchangers,^[3]

The data also has detailed microstructural analysis of asreceived and crept condition.^[4]

Chemical composition of NIMS [12] Grade P22 is within limits(wt%) as per ASME, Such as 0.05-0.15C(max); 0.3-0.6Mn;0.025P(max); 0.025 S(max);0.5 Si;1.9-2.6 Cr; 0.87-1.3 Mo.

[©] The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The heat treatments cycle as below

- Plate Normalized and Tempered Hot rolled 930°C/60 • min AC, 740°C / 120 min AC, 700°C / 240 min FC
- Plate Quenched and Tempered Hot rolled 930°C / 6 hours WQ, 635°C / 6 hr AC, 600°C / 2 hours FC
- Tubes Hot extruded & cold drawn 920°C/1 h 740°C / 1.5 hours AC

Microstructures of above grade as below.^[4,5]

- For tube material about 80% ferrite and 20% bainite.
- For plate material bainitic microstructures for both the quenched/tempered and annealed/tempered plate

EVALUATION OF CREEP MODELS

In this section, some of them are explored for their capabilities to predict creep life based on short-term data. Here capabilities are tested based on only two points data. Third point, which is long-term creep life, is predicted based on two points data set and compared with actual test results stated in NIMS data set. Hence only those data sets are selected which have minimum three data points for comparison.

Traditional Approach

Most of Creep models have been formulated using a power law equation. This equation states the relationship between temperature (T) and stress (σ). This relationship is first described by Arrhenius[1]given as below:

Norton[2]also expressed this relationship though equation (2):

$$\dot{\epsilon}_c \alpha \sigma^n$$
 (2)

Hereé, issecondary creep rate or steady state creep rate; Q, is activation energy for creep; n is stress exponent and R is the universal gas constant.

Using above equations (1) & (2) basic power law relationship can be made as per equation as:

$$\dot{\varepsilon}_c \alpha \sigma^n \exp(-Q_c/RT) \tag{3}$$

TheLarson-MillerParameter

The Larson-Miller Parameter is the most worldwide used techniques. It is based on the basic power law equation under constant stress, varying temperature. The Larson-Miller Parameter is given by:^[6]

$$P_{\rm L} = T(C_{\rm L} + \log t_{\rm f}) \tag{4}$$

Here C_L is Larson-Miller constant and P_L is Larson-Miller parameter.

C₁ is generally taken as 20 for metallic materials.^[7,8] This means that for the identical or similar test conditions failure time is same for all metallic materials. But it is not.

To find value of C₁ and P₁ for specific material, log t_f plotted against1/T. A liner trend line then fitted in which gradient is equal to PLM and intercept is equal to CLM. NRIM Data used for this approach is as per Table 1. A graph is shown in Figures 1 and 2.

Figure 2: P22 – Quench & Tempered Steel Plate

Note – For Annealed Steel graph is not plotted due to data limitation for constant stress

Table 1: NRIM Grade 22 material data								
Steel	Heat	Тетр	Stress	Actual time to rupture				
Quench & Temp Plate	MnG	525	294	406.6				
Quench & Temp Plate	MnG	500	294	2426.4				
Norm & Temp Plate	MaC	550	177	222.5				
Norm & Temp Plate	MaC	525	177	1318.8				

Using NRIM Data Sheet following set of parameters used to plot the graph

The Manson-Haferd Model

Manson-Haferd expresses relation between time and temperature in his model^[9] as below

$$P_{\rm MH} = (\log t - \log t_{\rm a}) / (T - T_{\rm a}) \tag{5}$$

HereP_{MH is} Manson-Haferd Parameter, t_ais time constant and T_a is temperature constant. The variable t represents time. This may be either time to fracture (t_{f1} or time to a pre-defined strain (t_{ϵ}) . T is the creep test's absolute temperature.

For our calculation, we will consider $t=t_f$. To get P_{MH} , T_a and t_a plot log(t_f) vs. T. Then fit liner trend line for the constant stress dataset. The slope of line is P_{MH} , For getting T_a and $log(t_{a})$ need more than one data set for different stress level. Then the coordinates at which all the straight line intersect will give Ta and log(ta). This is the limitation of this model. Also, there are likely chances that all data set trend line will intercept. Hence determining the value of T_andlog(t_) will be difficult. We have a limited data set with no three points available for each data set in considered material. Hence this model is not viable for predicting life on short data set with limited data availability

The Orr-Sherby-Dorn Model

The model given by Orr-Sherby-Dorn (OSD)^[10] is given by equation (6).

 $P_{\rm OSD} = \log t_{\rm f} - C_{\rm OSD} / T$ (6) Here $P_{\rm OSD}$ is the Orr-Sherby-Dorn parameter and $C_{\rm OSD}$ is constant. We need to plot log(tf) vs. 1/T for constant stress to determine these two values. And then linear trend line is to be fitted. Gradient is equal to C_{OSD} and the intercept equal to P_{OSD}. This is similar to Larsen Millar model.

Again, there is hardly any difference in the LMP and Orr-Sherby-Dorn approaches. Linear curve fitting and graph is the same in both the cases i.e., log(tf) vs. 1/T. Hence there is no much difference in approach. It has been excluded from finding parameters.

TheManson-SuccopModel

The Manson-Succop^[11] model given in equation (7) states logt_fis proportional to T for iso-stress condition. It is given as below:

$$P_{\rm MS} = \log t_{\rm f} + C_{\rm MS} T \tag{7}$$

 P_{MS} and C_{MS} are the Manson-Succop parameter and constant. To determine the value of these two, we need to plot log(tf) vs. T for constant stress. The difference in LMP and Manson-SuccopApproach is that the data is plotted against T instead of 1/T. NRIM Data used for this approach is as per Table 2. Fig 3 and 4 shows the graph plotted using this approach to evaluate constant.

The Monkman-Grant Approach

In Monkman-Grant relationship^[12] minimum creep rate is linked to the time to fracture t_f as below

Figure 3: P22 – Norm & Tempered Steel Plate

Figure 4: P22 – Quench & Tempered Steel Plate

Table 2. NRIM (Grade P22 Materia	Data for Iso	-Stress	Condition
	JIAUC I ZZ Matena	1 Data 101 150	-211633	Condition

Steel	Heat	Temp	Stress	Actual time to rupture
Quench & Temp Plate	MnG	525	294	406.6
Quench & Temp Plate	MnG	500	294	2426.4
Norm & Temp Plate	MaC	550	177	222.5
Norm & Temp Plate	MaC	525	177	1318.8

$$(\dot{\varepsilon}_{min})^m \cdot t_f = C_{MGR}$$
 (8)

 $\dot{\epsilon}_{min}$ = min creep rate, t_f is time to failure and C_{MGR} are constants. By Plotting graph of natural log (t_f) vs log($\dot{\epsilon}_{min}$) can determine the constants. NRIM data set for evaulating MGC approach is as per Table 3. Fig 6 and 7 shows the constant to be determined from graph.

TheGoldhoff-SherbyModel

TheGoldhoff-Sherbymodel ^[13] issimilartotheManson-Haferd model. The difference in this model is that the iso-stress lines need to converge to a point $(1/T_a, t_a)$:

$$P_{\rm GS} = (\log t - \log t_{\rm a})/(1/T - 1/T_{\rm a})$$
 (9)

Here t_a is time constant, T_a is temperature constant.

 P_{GS} is the Goldhoff-Sherby parameter. The variable t can be either the time to failure t_{fr} or the time to a specific strain t_e .To determine P_{GS} , T_a and t_a we can plot $log(t_f)$ vs 1/T. We then fit straight lines to each of the constant stress datasets. There are two things we need from this graph. The gradient of each line, PGS, and the coordinates all straight lines intersect give 1/Ta and $log(t_a)$. This is also similar to Manson-Succom approach. Getting need Ta and log(ta) need more than one

Fig. 6: P22 – Quench & Tempered Steel Plate

data set for different stress levels. Then the coordinates at which all the straight line intersect will give Ta and $log(t_a)$.

This is limitation of this model. Also there are likely chances that all data set trend line will intercept. Hence determining the value of Ta andlog(t_a) will be difficult.We have a limited data set where there are no three points available for each data set in considered material. Hence this model is not viable to predict life on short data set with limited data availability

The Soviet Prediction Approach

In this approach, two models are specified ^[14,15]:

Model(1): $\log t = a + b \log T + c \log \sigma + d/T + f \cdot \sigma/T$ (10)

Model(2): $\log t = a + b \log T + c \log(\sigma/T) + d \cdot \sigma/T + f/T$ (11)

Here a, b, c, d and f are constants. In this method, there are many constants and greater sensitivity. However, they are not separable from the variables T and σ . This will give more than one value for a, b, c, d and f. Their values are obtained from regression analysis by using Software packages such as PD6605.^[16] Hence this model is also not economically viable.

The Minimum Commitment Approach

The model in Minimum Commitment approach^[17,18] is given by equation (12):

Figure 7: 1 P22 – Norm & Tempered Steel Plate

Steel	Heat	Тетр		Stress	Actual Time to Rupture	
Quench & Temp Plate	MnG	525		294	406.6	
Quench & Temp Plate	MnG	500		294	2426.4	
Norm & Temp Plate	MaC	550		177	222.5	
Norm & Temp Plate	MaC	525		177	1318.8	
	Table 4: NRIM Grad	de 22 Materia	l Data for Is	o-Thermal co	ndition	
Steel	Heat		Тетр	Stress	Actual Time to Rupture	
Quench & Temp Plate	MnG		450	373	3130	
Quench & Temp Plate	MnG		450	392	1579.1	
Quench & Temp Plate	MnG		450	431	419.3	
Norm & Temp Plate	MaC	MaC		333	222.5	
Norm & Temp Plate	MaC		450	294	1318.8	

 $logt=a+blog\sigma+c\cdot\sigma^2+f\cdot T+g/T$ (12) There are six constants it is cumbersome to determine its value. Again this is similar to soviet prediction approach. Not suitable for limited data approach.

Modern Creep Life Approaches

In this study, only two models from modern creep life approaches which are very known are considered.

The Hyperbolic-Tangent Model

Rolls-Royce plc (London, UK)^[19,20,21] developed this model in 1990. It related the accumulated creep strain to current time, stress and temperature. This model is presented as below:

$$\sigma = \sigma_{TS} / 2\{1 - \tan h[k \cdot \log(t_{f}/t_{i})]\}$$
(13)
Here k and t_i are curve fitting parameters

Rearranging the above equation we get it into a linear form:

 $log (t_f) \sigma = \{tan h^{-1}[1 - 2 k \cdot]\} + log(t_i)$ (14) We nowcan plot graphlog(t_f) vs.tanh^{-1}\{1 - 2 k \cdot\} for each temperature. When a linear trend line is fitted the gradient

$$tanh^{-1}\{1-2 k \cdot \frac{\sigma}{\sigma_{TS}}\}$$

Figure 8: P22 – Norm & Tempered Steel Plate

is equal to 1/k, and the intercept equal to $log(t_i)$. NRIM data as per Table 4 is used to plot graph given in Fig. 8 and 9.

The Wilshire Model

Wilshire from Swansea University,^[22,23] presented his model as below.

$$\dot{\epsilon}_{\rm m} = A^* \cdot (\sigma/\sigma_{\rm TS}) \cdot \exp(-Q_{\rm c}^*/RT) = M/t_{\rm f}$$
(15)

Here $A^* \neq A$ and $Q_c^* \neq Q_c$. σ_{TS} is maximum stress / tensile strength of material at a specific creeptemperature. Augmenting Equation (13), creeplife is given by^[22,23,24]:

$$\sigma/\sigma_{\rm TS} = \exp(-k_1[t_f \exp(-Q_c^*/RT)]^{\rm u})$$
(16)

$$\sigma/\sigma_{TS} = \exp(-k_2[t_f \exp(-Qc^*/RT)]^v)$$
(17)

The Wilshire Equation like the previous method uses normalized stress. Here three constants to determine. k_1 , k_2 , u or v.Qcis activation energy at normalized constant stresses.

This is cumbersome method. For constant collecting data at constant normalized stresses is difficult. All NIMS data is either at constant stress or it can be at constant temperature. Above this, it is difficult to have constant normalized stresses

 $tanh^{-l}\{1-2\ k\cdot \frac{\sigma}{\sigma_{TS}}\}$

Figure 9: P22 – Quench & Tempered Steel Plate

To get Qcneed to plot first $ln(t_f)$ vs. 1/T at constant normalized stress. Fitting a linear trend line to each dataset the gradient

[27]

Table 5A: Grade P22 Creep Data [27]										
Stress (MPa)	Temperature (C)	UTS (Mpa)	Rupture time (s)							
450	1073	1000	2391800							
400	1123	887	313830							
400	1123	887	967620							
350	1173	773	76750							
300	1223	660	30427							

is equal to Qc/R. Ref Fig. 10 and 11 for determining constants from Graph is plotted using data given in Table 5A. To determine k_u and u, need to plot $\ln(-\ln(\sigma/\sigma_{UTS}))$ vs. $\ln(tf.exp(-Qc^*/RT))$ for all the data. The gradient of this graph is equal to u, and the intercept equal to $\ln(k_u)$. Now if we examine closely to find ku and u, another set of data is required and it should not be constant normalized stress. Else we will not be able to plot $\ln(-\ln(\sigma/\sigma_{UTS}))$ vs. $\ln(t_f. exp(-Qc^*/RT))$

NRIM data is not suitable for assessing this model as there is no any data available at constant normalized stress. Hence this model is also not viable for predicting long term creep life based on short term creep data with minimum set of data.

Results

The Larson-Miller Parameter

Table 5B: Time to rupture using LMP.										
Steel	Heat	Тетр	Stress	Time to Rupture	LMP	Predicted Time to Rupture	Error			
Quench & Temp Plate	MnG	475	294	8841.7	9.676102	15932.27	0.809425277			
Quench & Temp Plate	MnG	450	294	112506	11.66135	116000.7	0.39894026			

The Manson-Succop Approach

Table 6: Time to Rupture using MSA									
Steel	Heat	Тетр	Stress	Time to Rupture	MSC	Predicted Time to Rupture	Error		
Quench & Temp Plate	MnG	475	294	8841.7	9.5365	13856.37	0.572450385		
Quench & Temp Plate	MnG	450	294	112506	11.324	82784.82	3.392828675		

The Monkman-Grant Approach

Table 7: Time to Rupture using MG Approach

Steel	Heat	Тетр	Stress	Time to Rupture	MGC	Predicted Time to Rupture	Error
Quench & Temp Plate	MnG	475	294	8841.7	9.09761	8933.917	-0.010527087
Quench & Temp Plate	MnG	450	294	112506	11.91316	149217.3	-4.190785504

Modern Creep Life Approaches

The Hyperbolic-Tangent Approach

Table 8: Time to Rupture using Hyperbolic-Tanget Approach										
SteelHatTempStressTime to RuptureHyperbolicPredicted Time toSteelHeatTempStressTime to RuptureTangentRuptureError										
Quench & Temp Plate	MnG	450	294	112506	10.40235	32936.86	9.083235015			
Quench & Temp Plate	MnG	450	333	18347.2	9.250651	10411.34	0.905920474			
Quench & Temp Plate	MnG	450	353	6852.9	8.645407	5683.982	0.133438182			

ERROR ANALYSIS

The accuracy of Creep Models in predicting creep life was evaluated by calculating error in predicting rupture is calculated by

$$Error = \sqrt{\frac{Actual \ time \ to \ rupture \ in \ hours - Predicted \ time \ to \ rupture \ in \ hours)^2}{No \ of \ hours \ in \ year^2}}$$
(18)

There are various numerable approaches to error calculation based on no data points, This is simple clear and

an aggressive approach and it is suitable where there is no multiple set of data points.

Error analysis for various creep models carried out are presented below. Refer Table 9.

- At low temperature (450°C), Larsen-Miller approach has shown good accuracy
- For temperature 500°C, Mockman-Grant creep model stands better option. However error Calculated is for very short duration creep test

Figure 12: Error analysis of creep lifing models . HT – Hyperbolic Tangent; LMP – Larsen Miller Parameter; MGC-Mockman Grant Constant; MSC-Manson Succop Constant

Table 9: Error Analysis									
						Actual Time	Predicted		
Creep Model	Steel	Heat	Тетр	Stress	LMP	to Rupture	Time to Rupture	Error	
MGC	Quench & Temp Plate	MnG	450	294	11.91316	112506	149217.3	4.190785504	
LMP	Quench & Temp Plate	MnG	450	294	11.66135	112506	116000.7	-0.39894026	
MSC	Quench & Temp Plate	MnG	450	294	11.324	112506	82784.82	3.392828675	
HT	Quench & Temp Plate	MnG	450	294	10.40235	112506	32936.86	9.083235015	
HT	Norm & Temp Plate	MaC	450	245	12.1244	93446.3	184314.8	-10.37311295	
LMP	Norm & Temp Plate	MaC	475	177	11.02897	38955.4	61633.94	-2.588874026	
MGC	Norm & Temp Plate	MaC	475	177	10.8966	38955.4	53992.53	-1.716566995	
MSC	Norm & Temp Plate	MaC	475	177	10.727	38955.4	45569.78	-0.755065916	
HT	Quench & Temp Plate	MnG	450	333	9.250651	18347.2	10411.34	0.905920474	
LMP	Quench & Temp Plate	MnG	475	294	9.676102	8841.7	15932.27	-0.809425277	
MSC	Quench & Temp Plate	MnG	475	294	9.5365	8841.7	13856.37	-0.572450385	
MGC	Quench & Temp Plate	MnG	475	294	9.09761	8841.7	8933.917	-0.010527087	
HT	Quench & Temp Plate	MnG	450	353	8.645407	6852.9	5683.982	0.133438182	
LMP	Norm & Temp Plate	MaC	500	177	9.056625	6115.4	8575.161	-0.280794588	
MSC	Norm & Temp Plate	MaC	500	177	8.947	6115.4	7684.803	-0.179155575	
MGC	Norm & Temp Plate	MaC	500	177	8.684916	6115.4	5913.042	0.023100236	

 For temperature 475°C, Manson-Succup has better capability for creep life prediction in the range of 50000 hours.

DISCUSSION & CONCLUSIONS

Alloy steel Grade 22, one of the most widely used materials for high-temperature application in Power Plant and Petroleum Plant. The ageing of Plant calls for reliable methods to predict this material's long-term creep life to plan for predictive maintenance. Since plants are running continuously, it is necessary that this long-term creep life be estimated based on a short-term test with reliable accuracy. Considering this requirement, Traditional Creep Models and Modern Creep Models studied to evaluate their capability to predict creep rupture time based on limited set of data. The study allows a user to select a model for its predictive maintenance, which is economical and has greater accuracy. Hyperbolic-Tangent, Soviet, Minimum Commitment and the Wilshire approaches are computationally more complex and require large number of data sets.

Traditional approaches based on Power law equations are good under constant load condition. Larsen Miller Parameters capability to predict creep life based on a limited data set even for a two-point data set is highly accurate compared to all other approaches at low temperature (< 500 C) conditions.

Mockman Grant relations can also be good option in Isostress conditions for predicting creep life. However, it needs to studied and verified for its capability to predict creep life greater than 100000 hours expenses.

The study did not aim to find the whole creep curve prediction capability. However, it aimed to find the most suitable method when there is limited data with a short duration test (less than 1000 hrs). This is most of the boiler user's requirement for better planning preventive maintenance and related capital expenses.

ACKNOWLEDGMENTS

This research was done as a part of doctoral sponsorship program between SavitribaiPhule Pune University and Thermax Limited, Pune. The financial support from Thermax Limited for doctoral program is greatly appreciated.

AUTHOR **C**ONTRIBUTIONS

The co-authors, Dr. Nagesh Kini & Dr. Anand Bewoor guided this paper's publication in its final format. Their support for timely review, selecting and plotting the data made helped to complete this study.

REFERENCES

 Arrhenius, S., A., (1889). Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Z.Phys. Chem., 4, 96-116, doi:10.151 zpch-1889-0408, S2CID 202553486.

- [2] Betten, J., (2008). Creep Mechanics, Springer, Berlin, 52.
- [3] NIMS Creep Data Sheet No 36B., (2003). Data sheets on the elevated temperature properties of quenched and tempered 2.25Cr-1Mo steel plates for pressure vessels ASTM A542/A542M.
- [4] NIMS Creep Data Sheet No 11B, (1997). Data sheets on the elevated temperature properties of normalized and tempered 2.25Cr-1Mo steel plates for boilers and pressure vessels (SCMV 4 NT).
- [5] NIMS Creep Data Sheet No 3B, (1986). Data sheets on the elevated temperature properties of 2.25Cr-1Mo steel for boiler and heat exchanger seamless tubes STBA 24
- [6] NIMS Creep Data Sheet, (2005). Metallographic atlas of longterm crept materials, No M-4.
- [7] J.D. Parker, (2005). The Grade 22 low alloy steel handbook, EPRI, Palo Alto, CA, 1012840.
- [8] F.R. Larsson, and J.Miller, (1952). Trans ASME, 74, 765-775.
- [9] Larson, F.R., Miller, J., (1952). A time-temperature relationship for rupture and creep stresses. *Trans. ASME*, *74*, 765–775.
- [10] Kaufman, J.G., Long, Z., Ningileri, S. (2007). Application of time-temperature-stress parameters to high temperature performance of aluminum alloys In Aluminum Alloys for Transportation, Packaging, Aerospace, and Other Applications, 137–146.
- [11] Manson, S.S., Haferd, A.,M., (1953). A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data; National Advisory Committee for Aeronautics (NACA), Washington, DC, USA.
- [12] Orr, R.; Sherby, O., Dorn, J., (1954). Correlation of rupture data for metals at elevated temperatures. *Trans. ASM*, 46, 113–118.
- [13] Manson, S., Succop, G., (1956). Stress-Rupture Properties of Inconel 700 and Correlation on the Basis of Several Time-Temperature Parameters, ASTM Special Technical Publication (No. 174); ASTM, West Conshohocken, PA, USA, 40.
- [14] Forest C., Monkman & Nicholas J., Grant, (1956). An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests. in ASTM Proceeding, 593–620.
- [15] Goldhoff, R., Hahn, G., (1968). Correlation and Extrapolation of Creep-Rupture Data of Several Steels and Superalloys Using Time-Temperature Parameters. In ASM Publication D-8-10, American Society for Metals, Ed., American Society for Metals, Cleveland, OH, USA, , 199–247.
- [16] Evans, M., (**1999).** Method for improving parametric creep rupture life of 2-25Cr-1Mo steel using artificial neural networks. *Mater. Sci. Technol.*, *15*, 647–658.
- [17] Trunin, I.I., Golubova, N.G., Loginov, E.A., (1971). New Method of the Extrapolation of Creep-Test and Long-Time Strength Results. In Proceedings of the 4th International Symposium on Heat-Resistant Metallic Materials, Mala Fatra, Czechoslovakia, 168–176.
- [18] British Standards Institute. PD 6605–1 (1998). Guidance on Methodology for Assessment of Stress-Rupture Data. Procedure for Derivation of Strength Values, British Standards Institute: London, UK.
- [19] Manson, S.S., Ensign, C.R. (1978). Interpolation and Extrapolation of Creep Rupture Data by the Minimum Commitment Method. In Proceedings of the Part I, Focal Point Convergence. Pressure Vessel & Piping Conference, Montreal, QC, Canada, 26–29, 299–398.
- [20] Manson, S.S., Ensign, C.R. (1971). A Specialized Model for Analysis of Creep-Rupture Data by the Minimum Commitment; Station-Function Approach, NASA TM-X-52999, National

Aeronautics and Space Administration (NASA), Washington, DC, USA.

- [21] Williams, S.J. (1993). An Automatic Technique for the Analysis of Stress Rupture Data, Report MFR30017, Rolls-Royce plc, Derby, UK,.
- [22] Williams, S.J., (1999). The Implementation of Creep Data in Component FE Analyse. In Proceedings of the 1st International Conference on Component Optimization, Swansea, UK, 139–146.
- [23] Williams, S.J., Bache, M.R, Wilshire, B. (2010). Recent developments in the analysis of high temperature creep and creep fracture behaviour, *Mater. Sci. Technol. 26*, 1332– 1337.
- [24] Wilshire, B., Scharning, P.J., (2008). Prediction of long-term creep data for forged 1Cr-1Mo-0.25V steel. *Mater. Sci. Technol.*, 24, 1–9.
- [25] Wilshire, B.; Scharning, P.J. (**2008).** A new methodology for analysis of creep and creep fracture data for 9%–12% chromium steels. *Int. Mater. Rev.*, *53*, 91–104.
- [26] Wilshire, B.; Battenbough, A. (**2007).** Creep and creep fracture of polycrystalline copper. *Mater. Sci. Eng.*, 443, 156–166.
- [27] Gray, Veronica & Whittaker, Mark & Abdallah, Zakaria. (2015). Creep Models: Determining the Parameters and Constants of Failure. 10.13140/RG.2.1.3639.9520.

