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ABSTRACT

Cloud database serves flexible, affordable, and scalable database systems. Even the cloud database is secure with transport
layer security (TLS), but the performance overhead that TLS introduces when executing operations on one of the major
No SQL databases: Mongo DB in terms of latency. To explore TLS performance overhead for Mongo DB, we performed two
tests simulating common database usage patterns. We first investigated connection pooling, where an application uses a
single connection for many database operations. Then, we considered one request per connection in which an application
opens a connection, executes a process, and immediately closes the connection after completing the operation. Our
experimental result shows that applications that cannot endure significant performance overhead should be deployed
within a properly segmented network rather than enabling TLS. Applications using TLS should use a connection pool

rather than a connection-per-request.
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INTRODUCTION

dvances in cloud computing have created the need to

store and manage large amounts of unstructured data
in distributed databases while providing high availability
and scalability, therefore, No SQL databases is used to fill
this gap. These databases are being increasingly used to
store sensitive information. In this cutting-edge, security
is becoming a higher priority for organizations using such
databases. Common attacks on database systems include
eavesdropping i.e an attacker reads the communication
with the database. On the other hand, an attacker spies on
the transmission and alters the information i.e., man-in-the-
middle (MITM) attacks.

Moreover, an inside threat should not be overlooked,
making it necessary to protect internal network traffic. In
general, these integrity and confidentiality problems are
mitigated through encryption. A common way to provide
encryption on network communication is through SSL/TLS.
This prevents attackers from intercepting sensitive data
transferred between the application and the No SQL
server. Unfortunately, enabling this feature reduces the
communication performance with the No SQL database
server. Quantifying this performance degradation allows
businesses to decide whether the security benefitis worth the
additional cost. This paper describes the precise performance
overhead that TLS introduces when executing operations on
Mongo DB No SQL database server. To see the performance
overhead, we planned to conduct two tests simulating
common database usage patterns on Mongo DB:
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Test 1: Investigating connection pooling where an application
uses a single connection for many database operations. This
minimizes the TLS overhead introduced by opening a new
link.

Test 2: We considered one request per connection in which
an application opens a connection, executes an operation,
and immediately closes the link once the process is complete.
This introduces more performance overhead when compared
to a connection pool.

Literature Review

The performance, availability, and elastic scalability are
prioritized in cloud storage services with No SQL systems such
as MongoDB, DynamoDB, Cassandra, HBase, or Voldemort.
While the distribution strategy may differ, all of these systems
have one thing in common: they usually forego enterprise-
grade capabilities in return for improved performance or
availability. A classic example of a weak consistency model
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Figure1: Overview of methodology for Cloud Database
System

is given by D. Bermbach and J. Kuhlenkamp,"” which is
based on a comparison between CAP theorem and PACELC
model.”?3! An eventual consistency model is proposed to
achieve high availability for distributed computing and has
no security mechanism as an optional feature presented by
W. Vogels.*! The performance overhead of SSL for client-
server communication was explored by Apostolopoulos et
al,P! Kant et al.® Zhao et al.,”! and Coarfa et al.’® Here, the
outcome of this extremely simple situation is significantly
more predictable than the cloud database system because
just two machines are involved. Shirasuna et al. examine the
impact of TLS on SOAP-based web services performance.”
Cloud database systems cannot utilize the measuring
approach for more comprehensive benchmarking because
they uses a simple echo service. Various research studies
investigated the performance overhead of TLS in cloud
database systems while using obsolete protocols by using
Session Initiation Protocol (SIP) or Internet Protocol (IP) in the
ISO/OSI hierarchy.[012

On the other hand, existing methodologies do not
consider any security mechanisms in their research for
benchmarking cloud database systems.'*8 |n literature, a
dedicated benchmarking tool for a cloud database system
to ensure service quality was proposed by M. Grambow
et.al."! A pattern-based approach reduces the efforts for
defining micro-services benchmarks for cloud databases.?%
A comparative analysis of various TLS libraries which includes
authenticated encryption cipher, hashing, and public-key
cryptography but does not cover the cloud system.!2"
Various TLS libraries have been analyzed using the
cryptographic token interface, CPU-assisted cryptography
with AES-NI, thread safety, and language support.?? None
of the researchers has discussed the TLS overhead with
No SQL database like Mongo DB. So it motivates us to use
Open Source Yahoo! Cloud Serving Benchmark tool (YCSB),
to measure the performance overhead of TLS for Mongo
DB database. The impacts of TLS overhead over cloud
play a significant role on data security in cutting-edge
communication.

[1

METHODOLOGY

Communication in cloud computing depends on three
primary responsibilities in cloud database systems include:

r N

\‘“‘:‘

.

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023)

YCSB0.17

MongoDB
3.2.7

Script

MongoDB
3.2.7

Throughput? Connection Time?

Response Time?

Figure 2: Overview of connection pool tests.
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Figure 3: TLS Read-only throughput Overhead on Mongo
DB

Step 1 To replicate the stored data across multiple machines

as per user requirement

Step 2 Load Balancer used to maintain the load of the cloud

database system and proxy interface for client.

Step 3 Application provides an interface to user for the

exchange of data.

The overview of the methodology is shown in Figure 1.
The implementation consist of two phase to measure the

performance overhead of TLS with respect to throughput,

response time and connection time.

Phase 1: With Enabled TLS

We ran the Yahoo! Cloud System Benchmark (YCSB) 0.17.0
with Java 8 update 92 on a Mongo DB 4.0 instance with TLS
enabled when conducting the connection pool tests. We
modified the Mongo DB client used by the benchmark suite
to use TLS. When performing the one request per connection
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Fig. 4: TLS Read-only response time throughput overhead
on Mongo DB
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Figure 5: TLS Connection throughput Overhead on Mongo
DB

tests, we created a custom script using Node.js version 17.0.

We enabled TLS on Mongo DB by following the steps outlined

in the Mongo DB documentation.

Using TLS v1.3, although we varied the key length for
the initial RSA handshake, the symmetric cipher used for
communication remained the same for all tests (namely
AES256-GCM-SHA384). TLS generated the server-side
certificate before the start of testing. TLS could argue that
using an RSA handshake isn't an optimal approach to TLS,
from both a security and performance perspective shown
in Figure 2.

Phase 2: without enabled TLS

We have performed the same experiment as above (phase1)
except the enabled TLS.

Therefore, we looked into alternatives like the Diffie-Hellman
key exchange or its elliptic curve variant. But we didn’t use
these ciphers in this paper. We decided to maintain the
original setup for our tests to resemble a realistic scenario.

Experimental Setup

We performed connection pool and one request per
connection tests on an Intel Core i3-3217U 1.80GHz CPU (4
cores) with 8GB of RAM, Samsung HDD 500GB storage drive
running Windows 10 Pro, having Mongo DB version 4.0 and
testing tools.

ResuLT & ANALYSIS

Test 1: Connection pool

For this test, YCSB opens a connection to Mongo DB, executes
atest suite through the same link, and closes the connections
upon completion. Since we were only interested in the
overhead introduced by TLS, it was sufficient to run only
read operations rather than a combination of update and
read procedures. To run the test, we used the following script
with 1024, 2048, or 4096-bit key size.

YCSB Tool Script

1. #!/bin/bash

2. mongo ycsb --eval ‘db.dropDatabase()’ --tIsCAFile public.
crt --tls --host localhost

3. bin/ycsb load mongodb -s -P workloads/workloadc
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-p recordcount=20000 -p mongodb. url=mongodb://
localhost:28013 > tls_load_c.txt
4.forthreadsin1248;

5.do

6. bin/ycsb run mongodb -s -threads ${threads} -P
workloads/workloadc -p operationcount=20000000
-p mongodb.url=mongodb://localhost:28013 > tls_
run_c_S{threads}.txt

7.done

Initially, the script drops the database, ensuring that we
started with an empty database (line 2). Next, YCSB creates
the database and loads 20,000 records using the C test suite
(workload c) from the YCSB benchmark (line 3). Subsequently,
YCSB performs 20 million read operations with the C test
suite using 1, 2, 4, and 8 threads, respectively (lines 4-7). Each
thread connects separately to the database, and together
they complete all operations. We ran this script with different
TLS server certificates to test the cases mentioned above: no
TLS and TLS with 1024, 2048, and 4096-bit key size. We didn't
use the URL parameter ‘ssl=true’ to enable TLS on a Mongo
DB connection since we made small changes to YCSB that
enable TLS connections upon setup. When we examined
the throughput, measured in the number of operations per
second, we noticed that enabling TLS introduces an overhead
between 29% and 40%, shown in Table 1 and Figure 3.
Since the tests ran on a quad-core machine, the machine
expected the slight setback of using eight threads. We can
also conclude that the difference in speed using different
key lengths is negligible. This was also expected due to the
overhead created by the key size that only occurs at the time
of connection, the majority of time is spent on executing
the operations themselves. Note that the test only creates
as many connections as per threads.

The observed response time overhead of TLS from the
same test shown in Table 2 and Figure 4.

Unfortunately, we weren't able to compute a valid
standard deviation. This was because YCSB provides raw data
in milliseconds. However, most operations and their averages
(provided in microseconds) were under one millisecond.

Test 2: Connection time

1. var express = require(‘express’);

2. var mongodb = require('mongodb’);

3. var async = require(‘async’);

4. var fs = require(‘fs’);

5.var app = express();

6. var MongoClient = mongodb.MongoClient;
7.var url ='mongodb://localhost:28013/?ssl=true’;
8. var certFileBuf = fs.readFileSync(‘mongodb-cert.crt’);
9. var options ={

10. server: {tIsCA: certFileBuf}};

12. app.get(’/run; function (req, res) {

13.var times =[J;

14. async.timesSeries(10, function (n, callback) {
15. ar start = new Date().getTime();

16. async.timesSeries(100, function (n, callback) {
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Table 1: Comparison of TLS Read-only throughput overhead between No. of threads and Key Size

I7\'If?;eocfds ! 2 4 8

Key Size No. of Ops/ Percentage No.of Ops/ Percentage No.of Ops/ Percentage No.of Ops/ Percentage
Second (%) Second (%) Second (%) Second (%)

TLS OFF 6871.50 0.00 11598.24 0.00 15201.50 0.00 16151.18 0.00

1024-bit  4724.95 31.24 8185.46 29.42 10579.21 3041 9877.67 38.84

2048-bit  4609.37 32.92 7982.27 31.18 10656.64 31.18 9696.51 39.96

4096-bit  4714.12 31.40 7978.18 31.21 10575.03 3043 10030.70 37.89

Table 2: Comparison of TLS Read-only response time throughput overhead between No. of threads and Key Size

Thvead 2 ‘ :

Key Size Q:C'S:SPS/ Percentage ?:C'OO:SPS/ Percentage ls\l:c.(())rf\(?pS/ Percentage SN:c';)er?pS/ Percentage
TLS OFF 143.59 0.00 170.16 0.00 260.35 0.00 490.17 0.00
1024-bit  209.6 45.98 241.96 42.20 374.98 44.03 804.00 64.02
2048-bit  214.95 49.70 248.16 45.84 37240 43.04 818.98 67.08
4096-bit  210.14 46.35 248.38 45.97 375.19 44.01 791.87 61.55

Table 3: Comparison of TLS Connection throughput overhead
between Average connection/second and Key Size

Average

Encryption  connections Percentage (%) SDt:‘ZZZ;i
per second

TLS OFF 105.4702 0.00 5.62231

1024-bit 76.91441 27.07 3.546171

2048-bit 62.55387 40.96 2.065384

4096-bit 28.78176 72.71 0.80246

Average 46.91

17. MongoClient.connect(url, options, function (err, db) {
18. db.close();

19. callback();});}, function () {

22.var end = new Date().getTime();

23. times.push((end - start).toString());

24. callback();});}, function () { res.send(times);});});

30. var server = app.listen(3000, function () {

31. console.log('listening on port %d; server.address().

port);});

We expected that most performance overhead is introduced
while making a new connection despite the performance
overhead of a connection pool (as measured in test #1). This
test examined the theory by measuring connection time
using the following script:

The script opens (line 19) and closes (line 20) a connection
to Mongo DB a hundred times (line 18) while recording the
whole time (lines 17 and 24-25). It repeats this test 10 times,
taking the average of the consecutive runs (line 16).

N

QLI
AKA?‘

N O

-r
3N

uc

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023)

When extracting the raw data, we can see the average
connection per second and standard deviation of the ten
consecutive runs. It'simportant to note an overhead moving
from 27.07% for 1024-bit key size, 40.96% for 2048-bit key size
and 72.71% for 4096-bit key size concerning a connection
without TLS. Thus, 4096-bit TLS connections are up to four
times slower to establish than unencrypted connections
shown in Table 3. The average connection overhead in terms
of latency is 46.91 %.

The following graphiillustrates the elapsed time for each
run and presents it as connections per second shown in
Figure 5.

ConcLusioNs AND FUTURE ScoPE

In this paper comparative analysis with experimental result
had been performed, we found that TLS overhead is high,
especially for applications using one connection per request
with 4096-bit key size. The difference between establishing
a connection for different key lengths is negligible for an
application that maintains long-running connections. There
is still a large overall overhead compared to unencrypted
connections (around 46.91% in latency). Therefore, enabling
TLS on a MongoDB database increases the throughput
performance overhead between 27.07% - 40.96%. If such a
performance hit is not an option, TLS cannot use to protect
from MITM attacks on the internal network. An alternate
solution is to deploy the application and MongoDB servers in
aproperly segmented network. When network segmentation
is not possible, and a TLS approach is chosen, for instance,
due to compliance requirements, one should use connection
pools rather than opening and closing a connection for every
operation to reduce the overhead.
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