
Ab s t r ac t
Cloud database serves flexible, affordable, and scalable database systems. Even the cloud database is secure with transport 
layer security (TLS), but the performance overhead that TLS introduces when executing operations on one of the major 
No SQL databases: Mongo DB in terms of latency. To explore TLS performance overhead for Mongo DB, we performed two 
tests simulating common database usage patterns. We first investigated connection pooling, where an application uses a 
single connection for many database operations. Then, we considered one request per connection in which an application 
opens a connection, executes a process, and immediately closes the connection after completing the operation. Our 
experimental result shows that applications that cannot endure significant performance overhead should be deployed 
within a properly segmented network rather than enabling TLS. Applications using TLS should use a connection pool 
rather than a connection-per-request.
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In t r o d u c t i o n

Advances in cloud computing have created the need to 
store and manage large amounts of unstructured data 

in distributed databases while providing high availability 
and scalability, therefore, No SQL databases is used to fill 
this gap. These databases are being increasingly used to 
store sensitive information. In this cutting-edge, security 
is becoming a higher priority for organizations using such 
databases. Common attacks on database systems include 
eavesdropping i.e an attacker reads the communication 
with the database. On the other hand, an attacker spies on 
the transmission and alters the information i.e., man-in-the-
middle (MITM) attacks.

Moreover, an inside threat should not be overlooked, 
making it necessary to protect internal network traffic. In 
general, these integrity and confidentiality problems are 
mitigated through encryption. A common way to provide 
encryption on network communication is through SSL/TLS. 
This prevents attackers from intercepting sensitive data 
transferred between the application and the No SQL 
server. Unfortunately, enabling this feature reduces the 
communication performance with the No SQL database 
server. Quantifying this performance degradation allows 
businesses to decide whether the security benefit is worth the 
additional cost. This paper describes the precise performance 
overhead that TLS introduces when executing operations on 
Mongo DB No SQL database server. To see the performance 
overhead, we planned to conduct two tests simulating 
common database usage patterns on Mongo DB:

Test 1: Investigating connection pooling where an application 
uses a single connection for many database operations. This 
minimizes the TLS overhead introduced by opening a new 
link. 
Test 2: We considered one request per connection in which 
an application opens a connection, executes an operation, 
and immediately closes the link once the process is complete. 
This introduces more performance overhead when compared 
to a connection pool.

Literature Review
The performance, availability, and elastic scalability are 
prioritized in cloud storage services with No SQL systems such 
as MongoDB, DynamoDB, Cassandra, HBase, or Voldemort. 
While the distribution strategy may differ, all of these systems 
have one thing in common: they usually forego enterprise-
grade capabilities in return for improved performance or 
availability. A classic example of a weak consistency model 
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is given by D. Bermbach and J. Kuhlenkamp,[1] which is 
based on a comparison between CAP theorem and PACELC 
model.[2-3] An eventual consistency model is proposed to 
achieve high availability for distributed computing and has 
no security mechanism as an optional feature presented by 
W. Vogels.[4] The performance overhead of SSL for client-
server communication was explored by Apostolopoulos et 
al.,[5] Kant et al.,[6] Zhao et al.,[7] and Coarfa et al.[8] Here, the 
outcome of this extremely simple situation is significantly 
more predictable than the cloud database system because 
just two machines are involved. Shirasuna et al. examine the 
impact of TLS on SOAP-based web services performance.[9] 
Cloud database systems cannot utilize the measuring 
approach for more comprehensive benchmarking because 
they uses a simple echo service. Various research studies 
investigated the performance overhead of TLS in cloud 
database systems while using obsolete protocols by using 
Session Initiation Protocol (SIP) or Internet Protocol (IP) in the 
ISO/OSI hierarchy.[10-12]

On the other hand, existing methodologies do not 
consider any security mechanisms in their research for 
benchmarking cloud database systems.[13-18] In literature, a 
dedicated benchmarking tool for a cloud database system 
to ensure service quality was proposed by M. Grambow 
et.al.[19] A pattern-based approach reduces the efforts for 
defining micro-services benchmarks for cloud databases.[20] 
A comparative analysis of various TLS libraries which includes 
authenticated encryption cipher, hashing, and public-key 
cryptography but does not cover the cloud system.[21] 
Various TLS libraries have been analyzed using the 
cryptographic token interface, CPU-assisted cryptography 
with AES-NI, thread safety, and language support.[22] None 
of the researchers has discussed the TLS overhead with 
No SQL database like Mongo DB. So it motivates us to use 
Open Source Yahoo! Cloud Serving Benchmark tool (YCSB), 
to measure the performance overhead of TLS for Mongo 
DB database. The impacts of TLS overhead over cloud 
play a significant role on data security in cutting-edge 
communication.

Me t h o d o lo g y
Communication in cloud computing depends on three 
primary responsibilities in cloud database systems include: 

Step 1 To replicate the stored data across multiple machines 
as per user requirement
Step 2 Load Balancer used to maintain the load of the cloud 
database system and proxy interface for client.
Step 3 Application provides an interface to user for the 
exchange of data.
The overview of the methodology is shown in Figure 1.

The implementation consist of two phase to measure the 
performance overhead of TLS with respect to throughput, 
response time and connection time.

Phase 1: With Enabled TLS 
We ran the Yahoo! Cloud System Benchmark (YCSB) 0.17.0 
with Java 8 update 92 on a Mongo DB 4.0 instance with TLS 
enabled when conducting the connection pool tests. We 
modified the Mongo DB client used by the benchmark suite 
to use TLS. When performing the one request per connection 

Figure1: Overview of methodology for Cloud Database 
System

Figure 2: Overview of connection pool tests.

Figure 3: TLS Read-only throughput Overhead on Mongo 
DB

Fig. 4: TLS Read-only response time throughput overhead 
on Mongo DB
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tests, we created a custom script using Node.js version 17.0. 
We enabled TLS on Mongo DB by following the steps outlined 
in the Mongo DB documentation. 

Using TLS v1.3, although we varied the key length for 
the initial RSA handshake, the symmetric cipher used for 
communication remained the same for all tests (namely 
AES256-GCM-SHA384). TLS generated the server-side 
certificate before the start of testing. TLS could argue that 
using an RSA handshake isn’t an optimal approach to TLS, 
from both a security and performance perspective shown 
in Figure 2.

Phase 2: without enabled TLS
We have performed the same experiment as above (phase1) 
except the enabled TLS.
Therefore, we looked into alternatives like the Diffie-Hellman 
key exchange or its elliptic curve variant. But we didn’t use 
these ciphers in this paper. We decided to maintain the 
original setup for our tests to resemble a realistic scenario. 

Experimental Setup
We performed connection pool and one request per 
connection tests on an Intel Core i3-3217U 1.80GHz CPU (4 
cores) with 8GB of RAM, Samsung HDD 500GB storage drive 
running Windows 10 Pro, having Mongo DB version 4.0 and 
testing tools.

Re s u lt & An a lys i s

Test 1: Connection pool 
For this test, YCSB opens a connection to Mongo DB, executes 
a test suite through the same link, and closes the connections 
upon completion. Since we were only interested in the 
overhead introduced by TLS, it was sufficient to run only 
read operations rather than a combination of update and 
read procedures. To run the test, we used the following script 
with 1024, 2048, or 4096-bit key size.

YCSB Tool Script
1. #!/bin/bash 
2. mongo ycsb --eval ‘db.dropDatabase()’ --tlsCAFile public.
crt --tls --host localhost 
3. bin/ycsb load mongodb -s -P workloads/workloadc 

-p recordcount=20000 -p mongodb. url=mongodb://
localhost:28013 > tls_load_c.txt 
4. for threads in 1 2 4 8 ; 
5. do 
6. bin/ycsb run mongodb -s -threads ${threads} -P 
workloads/workloadc -p operationcount=20000000 
-p mongodb.url=mongodb://localhost:28013 > tls_
run_c_${threads}.txt 
7. done
Initially, the script drops the database, ensuring that we 
started with an empty database (line 2). Next, YCSB creates 
the database and loads 20,000 records using the C test suite 
(workload c) from the YCSB benchmark (line 3). Subsequently, 
YCSB performs 20 million read operations with the C test 
suite using 1, 2, 4, and 8 threads, respectively (lines 4-7). Each 
thread connects separately to the database, and together 
they complete all operations. We ran this script with different 
TLS server certificates to test the cases mentioned above: no 
TLS and TLS with 1024, 2048, and 4096-bit key size. We didn’t 
use the URL parameter ‘ssl=true’ to enable TLS on a Mongo 
DB connection since we made small changes to YCSB that 
enable TLS connections upon setup. When we examined 
the throughput, measured in the number of operations per 
second, we noticed that enabling TLS introduces an overhead 
between 29% and 40%, shown in Table 1 and Figure 3.
Since the tests ran on a quad-core machine, the machine 
expected the slight setback of using eight threads. We can 
also conclude that the difference in speed using different 
key lengths is negligible. This was also expected due to the 
overhead created by the key size that only occurs at the time 
of connection, the majority of time is spent on executing 
the operations themselves. Note that the test only creates 
as many connections as per threads. 

The observed response time overhead of TLS from the 
same test shown in Table 2 and Figure 4.

Unfortunately, we weren’t able to compute a valid 
standard deviation. This was because YCSB provides raw data 
in milliseconds. However, most operations and their averages 
(provided in microseconds) were under one millisecond.

Test 2: Connection time
1. var express = require(‘express’);
2. var mongodb = require(‘mongodb’);
3. var async = require(‘async’);
4. var fs = require(‘fs’);
5. var app = express();
6. var MongoClient = mongodb.MongoClient;
7. var url = ‘mongodb://localhost:28013/?ssl=true’;
8. var certFileBuf = fs.readFileSync(‘mongodb-cert.crt’);
9. var options = {
10. server: {tlsCA: certFileBuf }};
12. app.get(‘/run’, function (req, res) { 
13. var times = [];
14. async.timesSeries(10, function (n, callback) {
15. ar start = new Date().getTime();
16. async.timesSeries(100, function (n, callback) {

Figure 5: TLS Connection throughput Overhead on Mongo 
DB
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Table 1: Comparison of TLS Read-only throughput overhead between No. of threads and Key Size

No. of 
Threads 1 2 4 8

Key Size No. of Ops/
Second

Percentage 
(%)

No. of Ops/
Second

Percentage 
(%)

No. of Ops/
Second

Percentage 
(%)

No. of Ops/
Second

Percentage 
(%)

TLS OFF 6871.50 0.00 11598.24 0.00 15201.50 0.00 16151.18 0.00

1024-bit 4724.95 31.24 8185.46 29.42 10579.21 30.41 9877.67 38.84

2048-bit 4609.37 32.92 7982.27 31.18 10656.64 31.18 9696.51 39.96

4096-bit 4714.12 31.40 7978.18 31.21 10575.03 30.43 10030.70 37.89

Table 2: Comparison of TLS Read-only response time throughput overhead between No. of threads and Key Size

No. of 
Threads 1 2 4 8

Key Size No. of Ops/
Second Percentage No. of Ops/

Second Percentage No. of Ops/
Second Percentage No. of Ops/

Second Percentage

TLS OFF 143.59 0.00 170.16 0.00 260.35 0.00 490.17 0.00

1024-bit 209.6 45.98 241.96 42.20 374.98 44.03 804.00 64.02

2048-bit 214.95 49.70 248.16 45.84 372.40 43.04 818.98 67.08

4096-bit 210.14 46.35 248.38 45.97 375.19 44.01 791.87 61.55

Table 3: Comparison of TLS Connection throughput overhead 
between Average connection/second and Key Size

Encryption
Average 
connections 
per second

Percentage (%) Standard 
Deviation

TLS OFF 105.4702 0.00 5.62231

1024-bit 76.91441 27.07 3.546171

2048-bit 62.55387 40.96 2.065384

4096-bit 28.78176 72.71 0.80246

Average 46.91

When extracting the raw data, we can see the average 
connection per second and standard deviation of the ten 
consecutive runs. It’s important to note an overhead moving 
from 27.07% for 1024-bit key size, 40.96% for 2048-bit key size 
and 72.71% for 4096-bit key size concerning a connection 
without TLS. Thus, 4096-bit TLS connections are up to four 
times slower to establish than unencrypted connections 
shown in Table 3. The average connection overhead in terms 
of latency is 46.91 %.

The following graph illustrates the elapsed time for each 
run and presents it as connections per second shown in 
Figure 5.

Co n c lu s i o n s a n d Fu t u r e Sco p e
In this paper comparative analysis with experimental result 
had been performed, we found that TLS overhead is high, 
especially for applications using one connection per request 
with 4096-bit key size. The difference between establishing 
a connection for different key lengths is negligible for an 
application that maintains long-running connections. There 
is still a large overall overhead compared to unencrypted 
connections (around 46.91% in latency). Therefore, enabling 
TLS on a MongoDB database increases the throughput 
performance overhead between 27.07% - 40.96%. If such a 
performance hit is not an option, TLS cannot use to protect 
from MITM attacks on the internal network. An alternate 
solution is to deploy the application and MongoDB servers in 
a properly segmented network. When network segmentation 
is not possible, and a TLS approach is chosen, for instance, 
due to compliance requirements, one should use connection 
pools rather than opening and closing a connection for every 
operation to reduce the overhead.

17. MongoClient.connect(url, options, function (err, db) { 
18. db.close(); 
19. callback();});}, function () {
22. var end = new Date().getTime();
23. times.push((end - start).toString());
24. callback();});}, function () { res.send(times);});});
30. var server = app.listen(3000, function () {
31. console.log(‘listening on port %d’, server.address().
port);});
We expected that most performance overhead is introduced 
while making a new connection despite the performance 
overhead of a connection pool (as measured in test #1). This 
test examined the theory by measuring connection time 
using the following script:

The script opens (line 19) and closes (line 20) a connection 
to Mongo DB a hundred times (line 18) while recording the 
whole time (lines 17 and 24–25). It repeats this test 10 times, 
taking the average of the consecutive runs (line 16).
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