
Ab s t r ac t
Cloud database serves flexible, affordable, and scalable database systems. Even the cloud database is secure with transport
layer security (TLS), but the performance overhead that TLS introduces when executing operations on one of the major
No SQL databases: Mongo DB in terms of latency. To explore TLS performance overhead for Mongo DB, we performed two
tests simulating common database usage patterns. We first investigated connection pooling, where an application uses a
single connection for many database operations. Then, we considered one request per connection in which an application
opens a connection, executes a process, and immediately closes the connection after completing the operation. Our
experimental result shows that applications that cannot endure significant performance overhead should be deployed
within a properly segmented network rather than enabling TLS. Applications using TLS should use a connection pool
rather than a connection-per-request.
Keywords: SSL/TLS, Mongo DB, Cloud, Segmented network, Performance.
SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology (2023); DOI: 10.18090/samriddhi.v15i01.22

Impact of TLS Overhead on Segmented Network for
Cloud Database Systems
Suresh P. Kannojia*, Jitendra Kurmi
Department of Computer Science, University of Lucknow, Lucknow, Uttar Pradesh, India

Corresponding Author: Suresh P. Kannojia, Department of
Computer Science, University of Lucknow, Lucknow, Uttar
Pradesh, India, e-mail: spkannojia@gmail.com
How to cite this article: Kannojia, S.P., Kurmi, J. (2023).
Impact of TLS Overhead on Segmented Network for Cloud
Database Systems. SAMRIDDHI : A Journal of Physical Sciences,
Engineering and Technology, 15(1), 144-148.
Source of support: Nil
Conflict of interest: None

© The Author(s). 2023 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH ARTICLE
SAMRIDDHI Volume 15, Issue 1, 2023	 Print ISSN: 2229-7111	 Online ISSN: 2454-5767

In t r o d u c t i o n

Advances in cloud computing have created the need to
store and manage large amounts of unstructured data

in distributed databases while providing high availability
and scalability, therefore, No SQL databases is used to fill
this gap. These databases are being increasingly used to
store sensitive information. In this cutting-edge, security
is becoming a higher priority for organizations using such
databases. Common attacks on database systems include
eavesdropping i.e an attacker reads the communication
with the database. On the other hand, an attacker spies on
the transmission and alters the information i.e., man-in-the-
middle (MITM) attacks.

Moreover, an inside threat should not be overlooked,
making it necessary to protect internal network traffic. In
general, these integrity and confidentiality problems are
mitigated through encryption. A common way to provide
encryption on network communication is through SSL/TLS.
This prevents attackers from intercepting sensitive data
transferred between the application and the No SQL
server. Unfortunately, enabling this feature reduces the
communication performance with the No SQL database
server. Quantifying this performance degradation allows
businesses to decide whether the security benefit is worth the
additional cost. This paper describes the precise performance
overhead that TLS introduces when executing operations on
Mongo DB No SQL database server. To see the performance
overhead, we planned to conduct two tests simulating
common database usage patterns on Mongo DB:

Test 1: Investigating connection pooling where an application
uses a single connection for many database operations. This
minimizes the TLS overhead introduced by opening a new
link.
Test 2: We considered one request per connection in which
an application opens a connection, executes an operation,
and immediately closes the link once the process is complete.
This introduces more performance overhead when compared
to a connection pool.

Literature Review
The performance, availability, and elastic scalability are
prioritized in cloud storage services with No SQL systems such
as MongoDB, DynamoDB, Cassandra, HBase, or Voldemort.
While the distribution strategy may differ, all of these systems
have one thing in common: they usually forego enterprise-
grade capabilities in return for improved performance or
availability. A classic example of a weak consistency model

Impact of TLS Overhead on Segmented Network for Cloud Database Systems

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023) 145

is given by D. Bermbach and J. Kuhlenkamp,[1] which is
based on a comparison between CAP theorem and PACELC
model.[2-3] An eventual consistency model is proposed to
achieve high availability for distributed computing and has
no security mechanism as an optional feature presented by
W. Vogels.[4] The performance overhead of SSL for client-
server communication was explored by Apostolopoulos et
al.,[5] Kant et al.,[6] Zhao et al.,[7] and Coarfa et al.[8] Here, the
outcome of this extremely simple situation is significantly
more predictable than the cloud database system because
just two machines are involved. Shirasuna et al. examine the
impact of TLS on SOAP-based web services performance.[9]
Cloud database systems cannot utilize the measuring
approach for more comprehensive benchmarking because
they uses a simple echo service. Various research studies
investigated the performance overhead of TLS in cloud
database systems while using obsolete protocols by using
Session Initiation Protocol (SIP) or Internet Protocol (IP) in the
ISO/OSI hierarchy.[10-12]

On the other hand, existing methodologies do not
consider any security mechanisms in their research for
benchmarking cloud database systems.[13-18] In literature, a
dedicated benchmarking tool for a cloud database system
to ensure service quality was proposed by M. Grambow
et.al.[19] A pattern-based approach reduces the efforts for
defining micro-services benchmarks for cloud databases.[20]
A comparative analysis of various TLS libraries which includes
authenticated encryption cipher, hashing, and public-key
cryptography but does not cover the cloud system.[21]
Various TLS libraries have been analyzed using the
cryptographic token interface, CPU-assisted cryptography
with AES-NI, thread safety, and language support.[22] None
of the researchers has discussed the TLS overhead with
No SQL database like Mongo DB. So it motivates us to use
Open Source Yahoo! Cloud Serving Benchmark tool (YCSB),
to measure the performance overhead of TLS for Mongo
DB database. The impacts of TLS overhead over cloud
play a significant role on data security in cutting-edge
communication.

Me t h o d o lo g y
Communication in cloud computing depends on three
primary responsibilities in cloud database systems include:

Step 1 To replicate the stored data across multiple machines
as per user requirement
Step 2 Load Balancer used to maintain the load of the cloud
database system and proxy interface for client.
Step 3 Application provides an interface to user for the
exchange of data.
The overview of the methodology is shown in Figure 1.

The implementation consist of two phase to measure the
performance overhead of TLS with respect to throughput,
response time and connection time.

Phase 1: With Enabled TLS
We ran the Yahoo! Cloud System Benchmark (YCSB) 0.17.0
with Java 8 update 92 on a Mongo DB 4.0 instance with TLS
enabled when conducting the connection pool tests. We
modified the Mongo DB client used by the benchmark suite
to use TLS. When performing the one request per connection

Figure1: Overview of methodology for Cloud Database
System

Figure 2: Overview of connection pool tests.

Figure 3: TLS Read-only throughput Overhead on Mongo
DB

Fig. 4: TLS Read-only response time throughput overhead
on Mongo DB

Impact of TLS Overhead on Segmented Network for Cloud Database Systems

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023)146

tests, we created a custom script using Node.js version 17.0.
We enabled TLS on Mongo DB by following the steps outlined
in the Mongo DB documentation.

Using TLS v1.3, although we varied the key length for
the initial RSA handshake, the symmetric cipher used for
communication remained the same for all tests (namely
AES256-GCM-SHA384). TLS generated the server-side
certificate before the start of testing. TLS could argue that
using an RSA handshake isn’t an optimal approach to TLS,
from both a security and performance perspective shown
in Figure 2.

Phase 2: without enabled TLS
We have performed the same experiment as above (phase1)
except the enabled TLS.
Therefore, we looked into alternatives like the Diffie-Hellman
key exchange or its elliptic curve variant. But we didn’t use
these ciphers in this paper. We decided to maintain the
original setup for our tests to resemble a realistic scenario.

Experimental Setup
We performed connection pool and one request per
connection tests on an Intel Core i3-3217U 1.80GHz CPU (4
cores) with 8GB of RAM, Samsung HDD 500GB storage drive
running Windows 10 Pro, having Mongo DB version 4.0 and
testing tools.

Re s u lt & An a lys i s

Test 1: Connection pool
For this test, YCSB opens a connection to Mongo DB, executes
a test suite through the same link, and closes the connections
upon completion. Since we were only interested in the
overhead introduced by TLS, it was sufficient to run only
read operations rather than a combination of update and
read procedures. To run the test, we used the following script
with 1024, 2048, or 4096-bit key size.

YCSB Tool Script
1. #!/bin/bash
2. mongo ycsb --eval ‘db.dropDatabase()’ --tlsCAFile public.
crt --tls --host localhost
3. bin/ycsb load mongodb -s -P workloads/workloadc

-p recordcount=20000 -p mongodb. url=mongodb://
localhost:28013 > tls_load_c.txt
4. for threads in 1 2 4 8 ;
5. do
6. bin/ycsb run mongodb -s -threads ${threads} -P
workloads/workloadc -p operationcount=20000000
-p mongodb.url=mongodb://localhost:28013 > tls_
run_c_${threads}.txt
7. done
Initially, the script drops the database, ensuring that we
started with an empty database (line 2). Next, YCSB creates
the database and loads 20,000 records using the C test suite
(workload c) from the YCSB benchmark (line 3). Subsequently,
YCSB performs 20 million read operations with the C test
suite using 1, 2, 4, and 8 threads, respectively (lines 4-7). Each
thread connects separately to the database, and together
they complete all operations. We ran this script with different
TLS server certificates to test the cases mentioned above: no
TLS and TLS with 1024, 2048, and 4096-bit key size. We didn’t
use the URL parameter ‘ssl=true’ to enable TLS on a Mongo
DB connection since we made small changes to YCSB that
enable TLS connections upon setup. When we examined
the throughput, measured in the number of operations per
second, we noticed that enabling TLS introduces an overhead
between 29% and 40%, shown in Table 1 and Figure 3.
Since the tests ran on a quad-core machine, the machine
expected the slight setback of using eight threads. We can
also conclude that the difference in speed using different
key lengths is negligible. This was also expected due to the
overhead created by the key size that only occurs at the time
of connection, the majority of time is spent on executing
the operations themselves. Note that the test only creates
as many connections as per threads.

The observed response time overhead of TLS from the
same test shown in Table 2 and Figure 4.

Unfortunately, we weren’t able to compute a valid
standard deviation. This was because YCSB provides raw data
in milliseconds. However, most operations and their averages
(provided in microseconds) were under one millisecond.

Test 2: Connection time
1. var express = require(‘express’);
2. var mongodb = require(‘mongodb’);
3. var async = require(‘async’);
4. var fs = require(‘fs’);
5. var app = express();
6. var MongoClient = mongodb.MongoClient;
7. var url = ‘mongodb://localhost:28013/?ssl=true’;
8. var certFileBuf = fs.readFileSync(‘mongodb-cert.crt’);
9. var options = {
10. server: {tlsCA: certFileBuf }};
12. app.get(‘/run’, function (req, res) {
13. var times = [];
14. async.timesSeries(10, function (n, callback) {
15. ar start = new Date().getTime();
16. async.timesSeries(100, function (n, callback) {

Figure 5: TLS Connection throughput Overhead on Mongo
DB

Impact of TLS Overhead on Segmented Network for Cloud Database Systems

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023) 147

Table 1: Comparison of TLS Read-only throughput overhead between No. of threads and Key Size

No. of
Threads 1 2 4 8

Key Size No. of Ops/
Second

Percentage
(%)

No. of Ops/
Second

Percentage
(%)

No. of Ops/
Second

Percentage
(%)

No. of Ops/
Second

Percentage
(%)

TLS OFF 6871.50 0.00 11598.24 0.00 15201.50 0.00 16151.18 0.00

1024-bit 4724.95 31.24 8185.46 29.42 10579.21 30.41 9877.67 38.84

2048-bit 4609.37 32.92 7982.27 31.18 10656.64 31.18 9696.51 39.96

4096-bit 4714.12 31.40 7978.18 31.21 10575.03 30.43 10030.70 37.89

Table 2: Comparison of TLS Read-only response time throughput overhead between No. of threads and Key Size

No. of
Threads 1 2 4 8

Key Size No. of Ops/
Second Percentage No. of Ops/

Second Percentage No. of Ops/
Second Percentage No. of Ops/

Second Percentage

TLS OFF 143.59 0.00 170.16 0.00 260.35 0.00 490.17 0.00

1024-bit 209.6 45.98 241.96 42.20 374.98 44.03 804.00 64.02

2048-bit 214.95 49.70 248.16 45.84 372.40 43.04 818.98 67.08

4096-bit 210.14 46.35 248.38 45.97 375.19 44.01 791.87 61.55

Table 3: Comparison of TLS Connection throughput overhead
between Average connection/second and Key Size

Encryption
Average
connections
per second

Percentage (%) Standard
Deviation

TLS OFF 105.4702 0.00 5.62231

1024-bit 76.91441 27.07 3.546171

2048-bit 62.55387 40.96 2.065384

4096-bit 28.78176 72.71 0.80246

Average 46.91

When extracting the raw data, we can see the average
connection per second and standard deviation of the ten
consecutive runs. It’s important to note an overhead moving
from 27.07% for 1024-bit key size, 40.96% for 2048-bit key size
and 72.71% for 4096-bit key size concerning a connection
without TLS. Thus, 4096-bit TLS connections are up to four
times slower to establish than unencrypted connections
shown in Table 3. The average connection overhead in terms
of latency is 46.91 %.

The following graph illustrates the elapsed time for each
run and presents it as connections per second shown in
Figure 5.

Co n c lu s i o n s a n d Fu t u r e Sco p e
In this paper comparative analysis with experimental result
had been performed, we found that TLS overhead is high,
especially for applications using one connection per request
with 4096-bit key size. The difference between establishing
a connection for different key lengths is negligible for an
application that maintains long-running connections. There
is still a large overall overhead compared to unencrypted
connections (around 46.91% in latency). Therefore, enabling
TLS on a MongoDB database increases the throughput
performance overhead between 27.07% - 40.96%. If such a
performance hit is not an option, TLS cannot use to protect
from MITM attacks on the internal network. An alternate
solution is to deploy the application and MongoDB servers in
a properly segmented network. When network segmentation
is not possible, and a TLS approach is chosen, for instance,
due to compliance requirements, one should use connection
pools rather than opening and closing a connection for every
operation to reduce the overhead.

17. MongoClient.connect(url, options, function (err, db) {
18. db.close();
19. callback();});}, function () {
22. var end = new Date().getTime();
23. times.push((end - start).toString());
24. callback();});}, function () { res.send(times);});});
30. var server = app.listen(3000, function () {
31. console.log(‘listening on port %d’, server.address().
port);});
We expected that most performance overhead is introduced
while making a new connection despite the performance
overhead of a connection pool (as measured in test #1). This
test examined the theory by measuring connection time
using the following script:

The script opens (line 19) and closes (line 20) a connection
to Mongo DB a hundred times (line 18) while recording the
whole time (lines 17 and 24–25). It repeats this test 10 times,
taking the average of the consecutive runs (line 16).

Impact of TLS Overhead on Segmented Network for Cloud Database Systems

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 1 (2023)148

Re f e r e n c e s
[1]	 David Bermbach, Jorn Kuhlenkamp. Consistency in distributed

storage systems. In International Conference on Networked
Systems, Springer, Berlin, Heidelberg, 2013; 175-189.

[2]	 Eric A. Brewer. Towards robust distributed systems, In PODC
2000; 7(10.1145): 343477-343502.

[3]	 Daniel Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story, Computer
2012; 45(2): 37-42.

[4]	 Werner Vogels. Eventually consistent, Communications of the
ACM 2009; 52(1): 40-44.

[5]	 George Apostolopoulos, Vinod Peris, and Debanjan Saha.
Transport Layer Security: How much does it really cost?, In IEEE
INFOCOM’99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies 1999; 2:717-725.

[6]	 Krishna Kant, Ravishankar Iyer, and Prasant Mohapatra .
Architectural impact of secure socket layer on internet
servers, In Proceedings International Conference on
Computer Design 2000;7-14).

[7]	 Li Zhao, Ravi Iyer, Srihari Makineni, and Laxmi Bhuyan.
Anatomy and performance of SSL processing, In IEEE
International Symposium on Performance Analysis of
Systems and Software; 2005:197-206.

[8]	 Cristian Coar fa, Peter Druschel, and Dan S. Wallach.
Performance analysis of TLS Web servers, ACM Transactions
on Computer Systems (TOCS) 2006; 24(1): 39-69.

[9]	 Satoshi Shirasuna, Aleksander Slominski, Liang Fang, and
Dennis Gannon (2004, November). Performance comparison
of security mechanisms for grid services. In Fifth IEEE/ACM
international workshop on grid computing 2004; 360-364.

[10]	Sergio Rapuano, and Eugenio Zimeo. Measurement of
performance impact of ssl on ip data transmissions,
Measurement 2008; 41(5): 481-490.

[11]	Charles Shen, Erich Nahum, Henning Schulzrinne and Charles
P. Wright. The impact of TLS on SIP server performance:
Measurement and modelling, IEEE/ACM Transactions on
Networking 2012: 20(4):1217-1230.

[12]	Matjaz B. Juric, Ivan Rozman, Bostjan Brumen, Matjaz
Colnaric, and Marjan Hericko. Comparison of performance
of Web services, WS-Security, RMI, and RMI–SSL, Journal of
Systems and Software 2016; 79(5): 689-700.

[13]	Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB, In Proceedings of the 1st ACM
symposium on Cloud computing 2010; 143-154.

[14]	Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin
Xiao, Julio Lopez and Billie Rinaldi, (2011, October). Ycsb++
benchmarking and performance debugging advanced
features in scalable table stores, In Proceedings of the 2nd
ACM Symposium on Cloud Computing 2011; 1-14.

[15]	Liang Zhao, Anna Liu, and Jacky Keung. Evaluating cloud
platform architecture with the care framework, In 2010 Asia
Pacific Software Engineering Conference 2010; 60-69.

[16]	Transforming Diagnostics Manufacturing at Cepheid:
M igr at i o n f ro m Pap e r- B as e d Pro cess es to D igi t a l
Manufacturing using Opcenter MES. (2022). International
Journal of Research and Applied Innovations, 5(1), 9451-9456.
https://doi.org/10.15662/IJRAI.2022.0501005

[17]	Transforming Diagnostics Manufacturing at Cepheid:
M igr at i o n f ro m Pap e r- B as e d Pro cess es to D igi t a l
Manufacturing using Opcenter MES. (2022). International
Journal of Research and Applied Innovations, 5(1), 9451-9456.
https://doi.org/10.15662/IJRAI.2022.0501005

[18]	David Bermbach, Liang Zhao, and Sherif Sakr. Towards
comprehensive measurement of consistency guarantees
for cloud-hosted data storage services, In Technology
Conference on Performance Evaluation and Benchmarking
2013; 32-47.

[19]	David Bermbach, and Stefan Tai. Eventual consistency:
How soon is eventual? An evaluation of Amazon S3’s
consistency behaviour, In Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing 2011; 1-6.

[20]	Markus Klems, David Bermbach, and Rene Weinert. A runtime
quality measurement framework for cloud database service
systems, In Eighth International Conference on the Quality of
Information and Communications Technology 2012; 38-46.

[21]	Martin Grambow, Fabian Lehmann, and David Bermbach.
Continuous benchmarking: Using system benchmarking in
build pipelines, In IEEE International Conference on Cloud
Engineering (IC2E) 2019; 241-246.

[22]	Martin Grambow, Lukas Meusel, Erik Wittern, and David
Bermbach (2020, March). Benchmarking microservice
performance: a pattern-based approach, In Proceedings of
the 35th Annual ACM Symposium on Applied Computing
2020; 232-241.

[23]	Jitendra Kurmi and Suresh Prasad Kannojia. Comparative
Study of SSL/TLS Cryptographic Libraries, International
Journal of Innovative Research in Science, Engineering and
Technology, 2021; 10(8): 11658-11662.

[24]	Suresh Prasad Kannojia and Jitendra Kurmi. Analysis of
Cryptographic Libraries (SSL/TLS), International Journal of
Computer Sciences and Engineering 2021; 9(9); 59-62.

