
AbstrAct
In this research, we present Hermite wavelet collocation method (HeWM) for solving nonlinear Fredholm integral equations. 
The proposed method is based on operational matrices of Hermite wavelets, Leibnitz rule of integration and collocation 
points. Some numerical experiments have been performed to illustrate the accuracy and efficiency of the proposed method.
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IntroductIon

Integral equations are encountered in many applications of 
science and engineering such as potential theory, acoustics, 

geophysics, renewal theory, electricity and magnetism, 
elasticity, fluid mechanics, mathematical problems of 
radiative equilibrium, mathematical economics and theory 
of population. So due to the challenges being faced by many 
researchers, there is an acute requirement to emphasize the 
importance of interdisciplinary effort and computational 
approach to advance the study of solving integral equations 
for further scientific research. In the past literature, many 
research papers have been published to present and establish 
different numerical methods for solving integral equations. 
Besides some iterative methods like Homotopy perturbation 
method (HPM), Adomian decomposition method (ADM), and 
Variational Iteration  Method (VIM), various conventional 
methods such as Fourier spectral method, Galerkin method, 
collocation method, finite element method and finite 
difference method have been mentioned and used to solve 
linear and nonlinear integral equations. All these numerical 
schemes have been successfully applied for solving many 
integral equations which are one of the essential tools for 
various areas of applied mathematics and many other fields, 
including continuum mechanics, kinetic theory of gases, 
hereditary phenomena in physics and biology, quantum 
mechanics, radiation, optimization, optimal control systems, 
communication theory, queuing theory, medicine, the 
particle transport problems of astrophysics and reactor 
theory and the steady-state heat conduction. But due to 
some shortcomings of these numerical methods, researchers 
are making efforts to find more efficient alternatives for 
obtaining solutions to many practical and physical problems 
giving rise to integral equations.

Wavelets theory is a relatively new and emerging area in 
mathematical research and is being extensively used as a 
powerful tool in various science and engineering disciplines. 
Wavelets are mathematical functions that have been widely 
used in digital signal processing for waveform representation 
and segmentation, image compression, time-frequency 
analysis, quick algorithms for easy implementations and 
many other fields of pure and applied mathematics. In the 
recent years, the different types of wavelet methods have 
found their way for the numerical solution of different kinds 
of integral equations arising in mathematical physics models 
and many other scientific and engineering problems. In, 
Maleknejad and Sahlan,[1] linear semi-orthogonal compactly 
supported spine wavelets as basis functions have been used 
to propose an advanced numerical model for the efficient 
solution of linear Fredholm Integral equation of the second 
kind. Along with an elementary introduction to the basic and 
main concepts of variational iteration Method, this method's 
theory and applications and the most new recent results 
have been put together in a systematic and convenient 
form He.[2] Block-Pulse functions have been formulated 
in Maleknejad  et  al.[3] to demonstrate the solution for the 
Fredholm integral equations system of the second kind. 
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In Maleknejad & Mirzaee,[4] the operational matrix of the 
product of rationalized Haar functions vector is utilized 
to reduce the computation of linear Fredholm integral 
equations. In Ray & Sahu,[5] different numerical methods 
have been examined for solving both linear and nonlinear 
Fredholm integral equations of second kind.Variational 
iteration method has been successfully applied to find the 
approximate solution of Fredholm integral equation of both 
linear and nonlinear types. In Singh and Kumar,[6] an efficient 
Haar wavelet method has been proposed for the numerical 
solution of a class of nonlinear Volterra integral equations 
of the first kind by converting them into linear Volterra 
integral equations of the second kind. Numerical examples 
have been given to illustrate that this method gives better 
results than the numerical methods described in past. The 
numerical solution of nonlinear Fredholm integral equations 
using Leibnitz-Haar wavelet collocation method has been 
obtained in Shiralashettiand and Mundewadi.[7] With the 
help of Leibnitz rule, the integral equations are converted into 
differential equations with initial conditions and thereafter 
the Haar wavelet function and its operational matrix are 
employed to solve the resulting differential equations. In 
Mirzaee and Samadyar,[8] a new method based on operational 
matrices of Bernoulli wavelet has been developed for solving 
linear stochastic Itô-Volterra integral equations. By applying 
these matrices, the main problem is transformed into a 
linear system of algebraic equations, which can be solved by 
using a suitable numerical method. In Heydari et al.,[9] a new 
computational method based on the Chebyshev wavelets 
(CW) is proposed for solving nonlinear stochastic Itô–Volterra 
integral equations. 

Integral equations have attracted attention for most of 
the last century and their theory is continuously developing. 
The potential theory contributed more than any field to give 
rise to nonlinear integral equations. Mathematical physics 
models, such as diffraction problems, scattering in quantum 
mechanics, conformal mapping, and water waves also 
contributed to the creation of nonlinear integral equations. 
The nonlinearity of these models may give more than 
one solution and this is the nature of nonlinear problems.
Fredholm integral equation is one of the most important 
integral equation with enormous application in the theory of 
signal processing, linear forward modelling, inverse problems 
and in fluid mechanics problems involving hydrodynamic 
interactions near finite-sized elastic interfaces. In this paper, 
we have made an endeavour to develop Hermite wavelet 
based numerical technique using collocation points and 
Leibnitz rule in order to solve nonlinear Fredholm integral 
equations.

Leibnitz’s Rule[10]

Leibnitz’s rule of integration states that for any integral of 
the form

where -∞<c(x),d(x)<∞. The derivative of this integral is 
expressible as

where the partial derivative indicates that inside the 
integral, only the variation of F(x, t) with x is considered in 
taking the derivative. If a(x) and b(x) are constants rather than 
function of x, then

Hermite Wavelets and their Properties
Wavelets constitute a family of mathematical functions 
ψa,b derived from dilation (change of scale) and translation 
(change of position) of a single function ψ called the 
mother wavelet. If the dilation parameter 'a'and translation 
parameter 'b' are considered to vary continuously, the family 
of continuous wavelets can be written as

By restricting the parameters a and b to discrete values as 

we obtain the following family of discrete wavelets:

where  form a wavelet basis for .
In particular, when we choose  and , then 

 form an orthonormal basis. Hermite wavelets are 
defined as 

where , and  is Hermite 
polynomial of degree m.

Hermitepolynomials , are the solutions of Hermite’s 
differential equation given by

 =0,1,2,3……

These polynomials are given by the Rodrigue's formula

and are defined in the interval (-∞,∞).

Operational matrices of Integration (OMI)
For operational matrix of integration for Hermite wavelets, 
we take  and  The six 
basis functions on  are given by
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,

,

,

,

,

.
Let

Integrating the above basis functions with respect to x  
from 0 to x and expressing in matrix form, we obtain

Therefore,

where

 
and 

The double integration of above six basis is given by,

Hence

where

 

and

Similarly we can take any number of basis functions to 
find the corresponding operational matrices of integration.
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Function Approximation
We would like to bring a solution function  under Hermite 
space by approximating by elements of Hermite wavelet 
basis as follows,

To approximate  by truncating this series, we get

where C and  (x) are  matrix,

Convergence analysis
Theorem: A continuous function y(x) in H2 [0,1) defined on [0, 
1)  be bounded, then the Hermite  wavelets expansion of y(x) 
converges to it.

Proof: Let  be a bounded real valued function on 
. The Hermite coefficients of continuous functions 

 is defined as,

where . 

Substituting, we obtain 

Using GMVT for integrals,

, 

for some 

Put ,

Since y is bounded, therefore,  is absolutely convergent. 
Hence the Hermite series expansion of  converges 
uniformly.

Proposed Hermite wavelet collocation method 
(HeWM)
Consider nonlinear Fredholm integral equation of the second 
kind

                  (1)
where  is a nonlinear function defined on 

 and is known as the kernel of the integral 
equation. The unknown function  represents the 
solution of the integral equation. With the help of Leibnitz 
rule of integration, we convert the above integral equation 
into an equivalent differential equation

Let

  ,                      (2)
Using Leibnitz rule of integration, we obtain

                (3)
Differentiating twice w.r.t. and using Leibnitz rule, we get,

                      (4)
                     (5)

withinitial conditions

                        (6)
Consider the approximation

                       (7)
Integrating  twice and using , we get

                 (8)

       (9)
Substituting (7) – (9) in the differential equation (5), we 

obtain a nonlinear system of equations. From here, Hermite 
wavelet coefficients  are obtained with the help of Newton's 
method and substituting the values of these coefficients in 
(9), we get the required approximate solutions of equation (1). 

Numerical examples
In this section, we present some numerical examples to 
demonstrate the applicability and suitability of the above 
method.
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Example 1:
Solve

 (10)
with initial conditions  whose exact solution 

is 
Differentiating (10) w.r.t. and using Leibnitz rule, the 

equivalent differential equation is

             (11)
That is

        (12)
Assume that,

      (13)
Integrating (13), we obtain

      (14)
Substituting (13)-(14) in the differential equation (12), we 

obtain the following the system of equations

(15)
From here, Hermite wavelet coefficients are obtained. 

Approximate solution is obtained form (14) by substituting 
the values of wavelet coefficients into (14).

Table 1 shows the comparison of solutions and maximum 
absolute errors of Example 1. Figure 1 shows the comparison 
of exact and Hermite wavelet solutions of Example 1.

Example 2: 
Consider the nonlinear Fredholm integral equation

(16)

with initial conditions and exact 
solution as .
Differentiating (16) w.r.t and using Leibnitz rule of 

integration, we obtain the differential equation

    (17)

                         (18)
Consider an approximation

                          (19)
Integrating (19) twice and using initial conditions, we 

obtain

                    (20)

Figure 1: Comparison of exact and Hermite wavelet 
solution
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Table 1: Maximum error analysis of Example 1

Exact solution
HeWM  
(k = 1, M = 6)

Absolute errors  of 
HeWM

Absolute errors 
in [7]

Absolute errors 
in [11]

0.1 1.1051709180 1.1051706507 2.6E-07 1.4E-04 2.2E-03

0.2 1.2214027581 1.2214025365 2.2E-07 1.6E-04 3.3E-03

0.3 1.3498588075 1.3498585670 2.4E-07 1.9E-04 8.7E-03

0.4 1.4918246976 1.4918244113 2.8E-07 2.3E-04 1.6E-02

0.5 1.6487212707 1.6487209634 3.0E-07 2.6E-04 1.8E-02

0.6 1.8221188003 1.8221184703 3.3E-07 3.1E-04 1.1E-02

0.7 2.0137527074 2.0137523226 3.8E-07 3.6E-04 2.9E-03

0.8 2.2255409284 2.2255405064 4.2E-07 4.1E-04 8.1E-03

0.9 2.4596031111 2.4596027182 3.9E-07 4.8E-04 2.1E-02
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         (21)
Substituting (19)-(21) in (18), we obtain the following 

system of algebraic 

                         (22)
From here, Hermite wavelet coefficients are obtained. 

Approximate solution is obtained from (21) by substituting 
the values of wavelet coefficients.

Table 2 shows the comparison of solutions and maximum 
absolute errors of Example 2. Figure 2 shows the comparison 
of exact and Hermite wavelet solutions of Example 2.

Example 3:
Consider the nonlinear integral equation

     (23)
with initial conditions  and exact 

solution as 

Differentiating (23) w.r.t t, and using Leibnitz rule, it 
reduces to the differential equation

 (24) 

                              (25)
Consider an approximation

                           (26)
Integrating (26) twice and using initial conditions, we 

obtain

                             (27)

                   (28)

Table 3: Maximum absolute errors of Example 3

Exact solution
HeWM  
(k = 1, M = 6)

Absolute errors 
of HeWM

0.1 1.9900000000 1.9900000000 0

0.2 1.9600000000 1.9600000000 0

0.3 1.9100000000 1.9100000000 2.2E-16

0.4 1.8400000000 1.8400000000 2.2E-16

0.5 1.7500000000 1.7500000000 0

0.6 1.6400000000 1.6400000000 0

0.7 1.5100000000 1.5100000000 2.2E-16

0.8 1.3600000000 1.3600000000 2.2E-16

0.9 1.1900000000 1.1900000000 2.2E-16

Table 2: Maximum error analysis of Example 2

Exact solution HeWM (k=1,M=6)
Absolute errors of 
HeWM

Absolute errors 
in [7]

Absolute errors in 
[11]

0.1 1.1051709180 1.1052502851 7.9E-05 8.3E-06 9.5E-03

0.2 1.2214027581 1.2214285150 2.5E-05 1.7E-05 5.4E-03

0.3 1.3498588075 1.3498647980 5.9E-06 2.6E-05 4.4E-03

0.4 1.4918246976 1.4918263505 1.6E-06 3.6E-05 1.1E-02

0.5 1.6487212707 1.6487229585 1.6E-06 4.6E-05 2.3E-02

0.6 1.8221188003 1.8221211404 2.3E-06 5.7E-05 1.6E-02

0.7 2.0137527074 2.0137599700 7.2E-06 6.9E-05 8.4E-03

0.8 2.2255409284 2.2255685591 2.7E-05 8.2E-05 2.4E-03

0.9 2.4596031111 2.4596851998 8.2E-05 9.6E-05 1.5E-02

Figure 2: Comparison of exact and Hermite wavelet 
solution
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Figure 3: Comparison of exact and Hermite wavelet 
solution
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Substituting (26)-(28) in (25), we obtain the following system 
of equations 

                           (29)
Solving (29) to obtain Hermite wavelet coefficients. 
Approximate solution is obtained from (28) by substituting the 
values of wavelet coefficients. Table 3 shows the comparison 
of exact and Hermite wavelet solutions (K  =  1, M  =  4) of 
Example 3. Figure 3 shows the comparison of exact and 
Hermite wavelet solutions of Example 3. Numerical results 
are much better in comparison to numerical reults provided 
in Lepik and Tamme.[12] In,[12] for 2M  = 128, the maximum 
error is 3.1E-05. But, in present method, maximum error is for 
2.2E – 16, for M = 6, which is much less than errors provided 
in Lepik and Tamme.[12]

conclusIon
From above numerical observations, it is concluded that 
Hermite wavelet based numerical technique is more accurate 
and efficient in comparison of other numerical techniques 

discussed in Shiralashettiand & Mundewadi,[7] Babolian & 
Shahsavaran[11] and Lepik and Tamme.[12] For more accuracy, 
the number of collocation points may be increased.
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