1,1,2,3,4,5 - Hexahydro Tellurophene $[C_4H_8Te(II)]$ and 1,3-Dihydro- $2\lambda^4$ -Benzotellurole $[C_8H_8Te(II)]$ Derivatives

Rajesh Kumar*1 and Sangeeta Bajpai2

ABSTRACT

Convenient route of synthesis of the type R_2TeXY and $R_2Te(CH_3)X''$ were dove loved by the reactions of $R_2Te(II)$ [$R_2 = C_4H_8$, C_8H_8] with IX'(X'=Cl,Br), $RI(R=CH_3,C_2H_5)$ and $CH_3X''(X''=Cl,Br,NO_3,C_6H_5OCO)$. These complexes have been characterised through elemental analysis (Table 1) and 1H NMR spectral data (Table 2). The 1H NMR spectra of C_4H_8TeICl , C_4H_8TeIBr , $C_4H_8TeCH_3I$, $C_4H_8TeCH_3Cl$, $C_4H_8TeCH_3Br$, $C_4H_8TeCH_3NO_3$, $C_4H_8TeCH_3OCOC_6H_5$, $C_8H_8TeCH_3I$, and $C_8H_8Te-C_2H_3I$ have been recorded in $CDCl_3$ at 300 MHz. The study indicates that the heterocycles of $C_4H_8Te(II)$ and $C_8H_8Te(II)$ undergo oxidative addition reactions readily resulting in the increase in the oxidation number of central tellurium atom.

1. INTRODUCTION

A perusal of the literature reveals that a number of diorganotellurium(II) compounds have been prepared by the reduction of diorganotellurium(IV) dihalides with a variety of reducing agents⁽¹⁻⁷⁾. Compounds of the formula R₂Te(II) readily undergo oxidation addition reactions and which can be classified as (a) oxidative addition reactions with halogen, interhalogens and pseudohalogens (b) oxidative addition reactions with organic halides (c) oxidative addition reactions with N- haloamides or-imides. Reports on several complexes of diorganotellurides with mercuric halide and Cu(I) halides are available⁽⁸⁻²¹⁾.

Among oxidative addition reactions of diorganotellurides (II) with halogen, interhalogens and pseudohalogens, synthesis of diorganotellurium dihalides have been reported earlier by Irgolic (1-7) (Eq.1).

$$R_{2}Te + X_{2} \rightarrow R_{2}TeX_{2} (X= halogens)$$
 (1)

In 1976, Sadekov et.al (22) reported the synthesis of (p-RC₆H₄), TeF₂ (R= H, MeO) by oxidative addition reaction of tellurides with SF₄. Various compounds formed through the reaction of interhalogen & pseudohalogens with diorganotellurides have been reported(23-27). Srivastava et.al(28) reported the oxidative addition reactions of organotellurium (II) with interhalogens (XY = ICl, IBr, ICN, BrCN) leading to the formation of organotellurium (IV) compounds of the formula RR'TeXY ($R=R'=C_sH_s$, $p-CH_3OC_6H_4$; $R=C_6H_5$, $R'=p-CH_3OC_6H_4$). Later on Srivastava et.al(29) prepared several triorganotelluronium compounds by treating R₂Te (R=Ph, p- MeOC₆H₄) with $C_6H_5X(X = Cl, Br)$, cyclohexyl iodide, CH₃I and CH₂=CHCH₂Br. Oxidative addition reaction of R, Te(II) with N-haloamides or – imides have been reported for the first time from our laboratory⁽³⁰⁾. Among heterocyclic diorganotellurides, several compounds of the type $C_{g}H_{g}TeXY$ (XY = halogen, interhalogen, organic halide, benzamide) formed through oxidative

^{1*.} Rajesh Kumar, Assistant Professor Stage-III, Department of Humanities & Applied Sciences, School of Management Sciences, Techanical Campus, Lucknow, India. e-mail: drrajeshkumarsms@gmail.com

^{2.} Sangeeta Bajpai, Deptt. Of Chemistry, Amity University, Malhaur Campus, U.P. (India) e-mail: sbajpail@amity.edu

addition reactions of 1, 3-dihydro- $2\,\lambda^4$ - benzotellurole $[C_8H_8Te(II)]$ and their molecular adducts with $HgCl_2$ and Cu_2Cl_2 have been reported by Srivastava et.al⁽³¹⁾. Further the synthesis, spectroscopic studies and the solution behaviour of a series of cyclic telluronium salts of 1-organo-3,4-benzo-1-telluracyclopentane have been reported by Ali. Z. AL-Rubai et.al⁽³²⁾. In solvents of low polarity these compounds are associated to dimers via a weak ionic interaction. These associations were confirmed by X-ray and other structural studies⁽³³⁾. The above compounds were stable towards reductive elimination⁽³⁴⁻³⁷⁾.

With a view to extend this work and check the reactivity of organotellurium(II), we have synthesised and characterised some new heterocyclic diorganotelluride derivatives of the type R_2 TeX'Y and R_2 Te(CH₃)X" by the reactions of R_2 Te(II) [$R_2 = C_4H_8$, C_8H_8] with IX' (X'= Cl, Br), RI ($R = CH_3$, C_2H_5) and CH_3 X" (X" = Cl, Br, NO₃, C_6H_5 OCO). These complexes have been characterised through elemental analysis and 1H NMR spectral data.

2. EXPERIMENTAL

 $C_4H_8TeI_2^{(38)}$, $C_8H_8TeI_2^{(31)}$, $C_8H_8Te(II)^{(37)}$, $C_8H_8Te(II)^{(32)}$, $C_4H_8TeCH_3^{+}I^{-}(37)$ and $C_8H_8TeCH_3^{+}I^{-}$ were prepared by the literature methods or by the methods developed by us. Synthesis of $C_4H_8Te(II)$ and $C_8H_8Te(II)$ and their oxidative addition product are described as follows:

2.1 Preparation of C_aH_aTe (II) and C_aH_aTe (II)

To the boiling methanolic solution of $C_4H_8TeI_2$ (5g, 11.42mmol), $NaBH_4$ was added in a flask flushed with dry nitrogen until the orange colour of methanolic solution disappeared. The solution was filtered and poured in 150ml of distilled water in a beaker. Pale yellow milky solution obtained. It was then extracted with diethyl ether several times. The combined ether extracts were dried over $CaCl_2$ and kept overnight. It was filtered and reduced and $C_4H_8Te(II)$ was used

in situ for further reactions. C_8H_8 Te(II) (in situ) was similarly prepared by the reaction of (5g, 10.30mmol) of C_8H_8 TeI₂ and NaBH₄.

2.2 Preparation of C_AH_RTeXY (XY= ICl, IBr)

 ${
m C_4H_8Te(II)}$ (in situ) (.4195g.2.28mmol) was taken in a flask flushed with nitrogen. To this was added ICl dropwise until the yellow colour of the original reaction mixture turned orange with orange solid. It was further stirred in ice for 1/2 h more. Orange crystalline solid (${
m C_4H_8TeICl}$) was obtained which was filtered and recrystallised with dry ether. (Yield = 0.140g, 17.71%, m.p.105 °C). Reaction of ${
m C_4H_8Te(II)}$ in situ (.4195, 2.28mmol) with IBr (.472g, 2.28mmol), in similar, way yielded ${
m C_4H_8TeIBr}$ (Yield= 0.240g (26.89%), m.p. °C).

2.3 Preparation of C₄H₈TeCH₃I

In a typical experiment, to the ethereal solution of C_4H_8 Te(II) (0.4195g, 2.28mmol) was added CH_3 I (.3244g, 2.28mmol) in a flask flushed with dry nitrogen. Yellow crystalline solid was obtained. It was filtered and dried under vacuum (Yield 0.208g (27.96%), m.p.200°C).

2.4 Preparation of C_4H_8 Te $CH_3^+X^ (X = Cl, Br, NO_3, C_6H_5OCO)$

In a typical experiment, C₄H₈TeCH₃+I⁻ (0.458g, 1.41mmol), AgOOCC₆H₅ (0.3052g, 1.41mmol) and dry acetone (~15ml) were taken in a flask flushed with nitrogen. The reaction mixture was stirred for 2h under nitrogen and then filtered to remove AgI and excess of silver benzoate. The filtrate was reduced. White crystalline solid of C₄H₈TeCH₃OCOC₆H₅ was obtained. It was filtered and dried under vacuo (Yield: 0.183g (40.71%), m.p.40°C). C₄H₈TeCH₃+Cl⁻, C₄H₈TeCH₃+Br⁻ and C₄H₈TeCH₃+NO₃⁻, were prepared similarly using C₄H₈TeCH₃+I⁻ (0.458g, 1.41mmol) and corresponding AgCl (0.203g, 1.41mmol), AgBr (0.266g, 1.41mmol) and AgNO₃ (0.240g, 1.41mmol) respectively.

2.5 Preparation of $C_sH_sTeXY(XY=CH_3I, C_2H_3I)$

In a typical experiment, an ethereal solution of $C_8H_8Te(II)$ (0.92g, 3.97mmol) was mixed with CH_3I (.564g, 3.97mmol) in a flask flushed with nitrogen and allowed to stir. for 48 h. The mixture deposited a yellow crystalline solid which was separated and stirred in fresh ether for ~12 h. $C_8H_8TeCH_3I$ was then filtered, washed with solvent ether and dried in vacuo (Yield 1.33g (89.62%), m.p.210°C). $C_8H_8TeC_2H_5^{+}I^{-}$ (Yield 1.25g (81.19%), m.p. 200C) was prepared similarly using $C_8H_8Te(II)$ (0.92g,3.8mmol) and ethyl iodide (.6196g, 3.97mmol).

3. RESULTS AND DISCUSSION

The 1,1,2,3,4,5-hexahydro tellurophene and 1,3-dihydro- $2\lambda^4$ -benzotellurole derivatives obtained from C_4H_8 Te(II) and C_8H_8 Te(II) are listed in Table 8.1. They are solids, stable at room temperature and they are not effected by the atmospheric moisture. They are soluble in common organic solvents such as chloroform, acetone and benzene.

Proton Nuclear Magnetic Tesonance (¹**H NMR**) **Spectra:** The ¹HNMR spectra of C₄H₈TeICl, C₄H₈TeIBr, C₄H₈TeCH₃I, C₄H₈TeCH₃Cl, C₄H₈Te CH₃Br, C₄H₈TeCH₃NO₃, C₄H₈TeCH₃OCO C₆H₅, C₈H₈TeCH₃I, and C₈H₈Te -C₂H₅I have been recorded in CDCl₃ at 300 MHz. The ¹HNMR data of these complexes are listed in table 8.2 and discussed as follows;

3.1 ¹H NMR spectrum of C₁H₀TeICl

The ¹HNMR spectra of the title complex shows two sets of resonances due to methylene ring protons attached to tellurium (TeCH₂) and methylene ring protons attached to carbon (TeCH₂CH₂). Two singlets centered at 3.02 ppm and 2.02 ppm are observed due to TeCH₂ & TeCH₂CH₂ protons respectively.

3.2 ¹H NMR spectrum of C₄H₈TeIBr

The ¹HNMR spectra of C4H8TeIBr also shows two sets of resonances as discussed in the spectrum of the C₄H₈TeICl. Two singlets centered at 3.04 ppm and 2.66 ppm are due to TeCH₂ & TeCH₂CH₂ protons respectively.

3.3 ¹H NMR spectrum of C₁H₂TeCH₂I

In the ¹H NMR spectrum of the title complex, three types of protons viz. (i) TeCH₂(ii) TeCH₂CH₂ and (iii) CH₃ protons are present. A singlet at 2.51 ppm is due to the methyl protons whereas two singlets centered at 3.40 ppm and 2.80 ppm are attributed to TeCH₂ and TeCH₂CH₂ protons respectively. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

3.4 ¹H NMR spectrum of C₁H₂TeCH₃Cl

The ¹HNMR spectrum of the C₄H₈TeCH₃Cl shows three types of protons viz. (i) TeCH₂ (ii) TeCH₂CH₂ and (iii) CH₃ protons. Three singlets centered at 2.48 ppm, 3.20 ppm and 2.82 ppm are attributed to CH₃, TeCH₂ and TeCH₂CH₂ protons respectively. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

3.5 ¹H NMR spectrum of C₁H₈TeCH₃Br

In the ¹H NMR spectrum of the above complex, three singlets centered at 2.48 ppm, 3.68 ppm and 2.90ppm are attributed to CH₃, TeCH₂ and TeCH₂CH₂ protons respectively. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

3.6 ¹H NMR spectrum of C₄H₈TeCH₃NO₃

The ¹H NMR spectra of C₄H₈TeCH₃NO₃ shows two singlets for TeCH₂ and TeCH₂CH₂ protons at 3.54 ppm and 2.71 ppm respectively. The CH₃ protons appear as a singlet at 2.41 ppm. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

3.7 ¹H NMR spectrum of C₄H₈TeCH₃OCOC₆H₅

In the ¹H NMR spectrum of the above complex, four types of protons viz. (i) TeCH₂ (ii) TeCH₂CH₂ (iii) CH₃ protons and (iv) C₆H₅ protons are present. Three singlets centered at 3.00 ppm, 2.58 ppm and 2.38ppm are attributed to TeCH, protons, TeCH, CH, protons and CH₃ protons respectively. A multiplet centered at 7.20 ppm is due to C₆H₅ protons. The integration of the peak areas of TeCH₂, TeCH₂CH₂, CH₃ and C₆H₅ protons corresponds to the proposed stoichiometry of the complex.

Table -1: Characterisation data of C4H8TeIX (X =Cl, Br), C4H8TeCH3X (X =Cl, Br, I, NO3, OCOC6H5) and C8H8TeRX (R = CH3, C2H5; X = I)

S.	Complex	M.P.	Colour	Yield	Elemental Analysis (%) obsd.		
No.		(°C)		(%)	(calcd.)		
					C	H	Te
1.	C ₄ H ₈ TeICl	105	Orange	17.71	13.83	2.30	36.86
					(13.87)	(2.31)	(36.87)
2.	C ₄ H ₈ TeIBr	105	Yellow	26.89	12.27	2.03	32.66
					(12.29)	(2.05)	(32.67)
3.	C ₄ H ₈ TeCH ₃ I	200	Yellow	27.96	18.41	3.32	39.16
					(18.43)	(3.38)	(39.19)
4.	C ₄ H ₈ TeCH ₃ Cl	80	Dull	25.52	25.60	4.65	54.48
			White		(25.63)	(4.70)	(54.51)
5.	C ₄ H ₈ TeCH ₃ Br	90	Pale	31.14	21.52	3.92	45.74
			Yellow		(21.54)	(3.95)	(45.80)
6.	C ₄ H ₈ TeCH ₃ NO ₃	110	Dull	30.56	23.01	4.19	48.92
			White		(23.02)	(4.22)	(48.96)
7.	C ₄ H ₈ TeCH ₃ OCOC ₆ H ₅	40	White	40.71	44.98	4.99	39.89
					(45.06)	(5.01)	(39.92)
8.	C ₈ H ₈ TeCH ₃ I	210	Yellow	89.62	28.88	2.93	34.15
					(28.91)	(2.94)	(34.15)
9.	$C_8H_8TeC_2H_5I$	200	Yellow	81.19	30.92	3.33	32.90
					(30.96)	(3.35)	(32.92)

Table -2: 1H NMR data of C4H8TeIX (X=Cl, Br), C4H8TeCH3X (X=Cl, Br, I, NO3, OCOC6H5) and C8H8TeRX (R=CH3, C2H5; X=I)

S. No.	Complex	Chemical shift (δ) ppm							
		TeCH ₂ Protons	TeCH ₂ CH ₂ Protons	CH ₃ Protons	CH ₂ Protons	C ₆ H ₅ ⁺ /C ₆ H ₄ ⁺⁺ Protons			
1.	C ₄ H ₈ TeICl	3.02 (s)	2.02 (s)	-	-	-			
2.	C ₄ H ₈ TeIBr	3.04 (s)	2.66(s)	-	-	-			
3.	C ₄ H ₈ TeCH ₃ I	3.40(s)	2.80(s)	2.51(s)	-	-			
4.	C ₄ H ₈ TeCH ₃ Cl	3.20(s)	2.82(s)	2.48(s)	-	-			
5.	$C_4H_8TeCH_3Br$	3.68(s)	2.90(s)	2.48(s)	-	-			
6.	$C_4H_8TeCH_3NO_3$	3.54(s)	2.71(s)	2.41(s)	-	-			
7.	C ₄ H ₈ TeCH ₃ OCOC ₆ H ₅	3.00(s)	2.58(s)	2.38(s)	-	$7.20(m)^{+}$			
8.	$C_8H_8TeCH_3I$	5.01(t)	_	2.53(s)	-	7.19++			
9.	$C_8H_8TeC_2H_5I$	4.28(d)	-	3.20(q)	1.47(m)	7.19++			

3.8 ¹H NMR spectrum of C₈H₈TeCH₄I

In the 1 H NMR spectrum of the title complex, three types of protons viz. (i) TeCH $_2$ protons (ii) C $_6$ H $_4$ protons and (iii) CH $_3$ protons are present. The spectra of the above complex shows three signals, one as a sharp singlet at 2.53 ppm due to CH $_3$ protons, a triplet centered at 5.01 ppm due to TeCH $_2$ protons and the phenyl protons appear as a multiplet at 7.19 ppm. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

3.9 ¹H NMR spectrum of C_gH_gTeC₇H₅I

The 1 H NMR spectrum of the above complex shows four signals. A doublet is centered at 4.28 ppm and is due to TeCH $_2$ protons. A multiplet centered at 7.19 ppm is due to C_6H_4 protons. A multiplet centered at 1.47 ppm and a quartet centered at 3.20 ppm is attributed to CH $_2$ protons and CH $_3$ protons respectively. The integration of the peak areas corresponds to the proposed stoichiometry of the complex.

The study indicates that the heterocycles of

C4H8Te(II)
$$\begin{bmatrix} c_{H_1} & \cdots & c_{H_2} \\ c_{H_2} & \cdots & c_{H_2} \end{bmatrix}$$
 and

C8H8Te(II) [undergo oxidative addition reactions readily resulting in the increase in the

oxidation number of central tellurium atom.

REFERENCES

- [1] K. J. Irgolic: The Organic Chemistry of Tellurium Gordon, Breach Science, Publisher New York (1974).
- [2] K. J. Irgolic : J. Organomet. Chem. 103 (1975) 91.
- [3] K. J. Irgolic: J. Organomet. Chem. 130 (1977)411.
- [4] K. J. Irgolic: J. Organomet. Chem. 158 (1978) 235.
- [5] K. J. Irgolic: J. Organomet. Chem. 158 (1978) 267.
- [6] K. J. Irgolic: J. Organomet. Chem. 189 (1980) 65.
- [7] K. J. Irgolic: J. Organomet. Chem. 203 (1980) 367.
- [8] K. Lederer: Chem. Ber. 47 (1914) 277.

- [9] K. Lederer: Chem. Ber. 48 (1915) 1422.
- [10] K. Lederer: Chem. Ber. 53 (1920) 1674.
- [11] K. Lederer: Chem. Ber. 49 (1916) 1615.
- [12] K. Lederer: Chem. Ber. 53 (1920) 712.
- [13] K. Lederer: Chem. Ber. 52 (1919) 1989.
- [14] K. Lederer: Chem. Ber. 47 (1914) 277.
- [15] K. Lederer: Chem. Ber. 49 (1916) 1076.
- [16] K. Lederer: Chem. Ber. 49 (1916) 2532.
- [17] K. Lederer: Chem. Ber. 50 (1917) 238.
- [18] K. Lederer: Chem. Ber. 49 (1916) 334.
- [19] K. Lederer: Chem. Ber. 49 (1916) 2663.
- [20] H. B. Dance and C. H. W. Jones: J. Organomet. Chem. 152 (1978) 175.
- [21] W. R. Mcwhinnie and V. Rattanaphani: Inorg. Chim. Acta. 9 (1974) 153.
- [22] I. D. Sadekov, A. Ya. Bushkov, L. N. Markouskii and V. I. Minkin: Zh. Obshch. Khim. 46 (1976) 1660.
- [23] C. D. Desjardins, C. Lau and V. J. Passmore: Inorg. Nucl. Chem. Lett. 10 (2) (1974) 151.
- [24] F. H. Musa, W. R. Mcwhinnie and A.W. Downs : J. Organomet. Chem. (3) C-43-44 (1977) 134.
- [25] F. H. Musa, and W. R. Mcwhinnie: J. Organomet. Chem. 159 (1978) 37.
- [26] A. Ya. Bushkov and I. D. Sadekov : Zh. Obshch. Khim. 47(8) (1977) 1917.
- [27] I. D Sadekov, A. Ya. Bushkov and V.P. Metlushenko: Zh. Obshch. Khim. 3 48 (1978)1658.
- [28] T. N. Srivastava, R. C. Srivastava and Mala Singh: J. Organomet. Chem. 160 (1978) 449.
- [29] T. N. Srivastava, R. C. Srivastava and Mala Singh: Ind. J. Chem. 19A (1980) 435.
- [30] T. N. Srivastava, R. C. Srivastava and Mala Singh: Inorg. Chem. Acta. 33 (1979) L99.
- [31] T. N. Srivastava, P. C. Srivastava and R. Kumar: J. Ind. Chem. Soc. 59 (1982) 186.
- [32] Ali. Z. Al-Rubaie, W.R. McWhinnie, P.Granger and S. Chapelle: J. Organomet. Chem. 234 (1982) 287.

- [33] P. P. Power and X. Xiaojie : J. Chem. Soc. Chem. Commun. (1984) 358.
- [34](a) E. Nieke and R. Rüger: Angew. Chem. 95 (1983) 154.
- (b) T. Fjeldberg, H. Hope, M.F.Lappert, P.P.Power and A. J. thorne: J. Chem. Soc. Chem. Commun. (1983) 639.
- [35] M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava: Metal and Metalloid Amides, Wiley, Chichester, 1980.
- [36](a) D. Mootz, A. Zinnius and B. Bottcher : Angew. Chem. 81(1969) 398.
- (b) R. D. Rogers, J. L. Atwood and R. Grüning: J. Organomet. Chem. 157 (1978)229.
- (c) T. Fjeldberg, P. B. Hitchcook, M. F. Lappert and A. J. Thorne: J. Chem. Soc. Chem. Commun. (1984) 822.
- [37] Ali. Z. Al-Rubaie and H. A. Y. Alshirayda:J. Organomet. Chem. 287 (1985) 321.
- [38] G. T. Morgan and F. H. Burstall: J. Chem. Soc. (1931) 180.