
Ab s t r ac t
The rapid emergence of agentic artificial intelligence systems introduces a fundamental shift in cybersecurity risk, as 
autonomous AI agents increasingly possess persistent memory, goal-driven planning, and the ability to invoke external 
tools and services. Unlike traditional AI models, agentic systems act continuously within operational environments, 
expanding the attack surface and challenging existing security and governance frameworks. This article examines 
security risks specific to agentic AI through a structured threat modeling lens, focusing on vulnerabilities arising from 
autonomy, recursive decision-making, and multi-agent interaction. It further analyzes technical and organizational control 
mechanisms designed to constrain agent behavior, including permission scoping, tool-use restrictions, auditability, and 
safe interruption mechanisms. 
By synthesizing recent research on agent architectures, trust and risk management, and ethical governance, the article 
argues that securing agentic AI requires a layered defense strategy that integrates architectural safeguards, runtime controls, 
and institutional oversight. The study contributes to the growing literature on AI security by clarifying how control surfaces 
and governance mechanisms can be systematically designed to ensure accountability, resilience, and safe deployment of 
autonomous AI agents in real-world systems.
Keywords: Agentic AI; AI security; Threat modeling; Autonomous agents; Tool-use governance; Auditability; Kill-switch 
design.
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In t r o d u c t i o n
The rapid evolution of artificial intelligence from static, task-
bound models to autonomous, goal-directed agents has 
introduced a fundamental shift in the security landscape of 
AI-enabled systems. Agentic AI systems are characterized by 
their ability to plan, reason over extended horizons, invoke 
external tools, retain memory, and adapt behavior through 
continuous interaction with dynamic environments. While 
these capabilities unlock significant gains in productivity, 
automation, and decision-making, they simultaneously 
expand the attack surface of AI systems in ways that 
traditional model-centric security frameworks are ill-
equipped to address (Lazer et al., 2026; Nowaczyk, 2025).

Conventional AI security research has largely focused on 
data poisoning, adversarial inputs, and model robustness. 
However, agentic AI systems behave less like passive 
software components and more like autonomous cyber 
actors, capable of executing sequences of actions that may 
unintentionally violate security boundaries or be deliberately 
exploited by adversaries. Recent studies demonstrate 
that platform-level safeguards and infrastructure security 
controls are insufficient to contain threats arising from agent 
autonomy, recursive decision-making, and tool-mediated 

execution (Williams et al., 2025; Raza et al., 2025). As a result, 
security failures in agentic systems increasingly manifest not 
as isolated model errors but as emergent behaviors spanning 
cognition, execution, and coordination layers.
Threat modeling for agentic AI therefore requires a paradigm 
shift from static risk assessment toward lifecycle-aware 
and behavior-centric security analysis. Emerging research 
identifies novel threat vectors such as goal hijacking, 
permission escalation through tool abuse, latent objective 
drift, and collusion across multi-agent systems (Lazer et al., 
2026; Raza et al., 2025). These risks are further amplified by the 
persistence of agent memory and the opacity of long-horizon 
planning processes, which complicate detection, attribution, 
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and forensic analysis (Koubaa, 2025; Farooq et al., 2025).
In response to these challenges, the literature increasingly 

emphasizes the need for explicit control mechanisms 
embedded within agent architectures. Permission scoping, 
constrained tool use, continuous auditability, and reliable kill-
switch mechanisms have emerged as core design principles 
for securing autonomous agents (Huang & Hughes, 2025a; 
Khan et al., 2025). Importantly, these controls must operate 
not only at the execution layer but also across planning, 
learning, and coordination processes to ensure that agent 
behavior remains observable, interruptible, and accountable. 
This article builds on recent advances in agentic AI security to 
examine threat modeling approaches and control strategies 
that are essential for the safe deployment of autonomous AI 
agents in real-world environments.

Agentic AI Architecture and Security-Relevant 
Properties
Agentic Artificial Intelligence represents a structural 
evolution from traditional, task-bounded AI systems toward 
autonomous entities capable of goal formulation, long-
horizon planning, tool invocation, and adaptive learning. 
Unlike conventional machine learning pipelines, agentic AI 
systems operate persistently within dynamic environments, 
interacting with digital infrastructure, humans, and other 
agents. These architectural shifts introduce a distinct set 
of security-relevant properties that fundamentally reshape 
threat models, control requirements, and governance 
assumptions (Lazer et al., 2026; Nowaczyk, 2025). This section 
examines the core architectural components of agentic AI 
systems and analyzes how their intrinsic properties create 
novel security risks and control challenges.

Core Architectural Layers of Agentic AI Systems
Agentic AI architectures are typically organized into 
layered subsystems that collectively enable autonomous 
behavior. At the cognitive layer, large language models or 
hybrid reasoning engines perform perception, planning, 
and decision-making. This layer is supported by memory 
subsystems, including short-term context buffers, long-term 
vector memory, and external knowledge stores that allow 
agents to accumulate experience over time (Nowaczyk, 2025; 
Cornu, 2025).

The execution layer translates abstract plans into concrete 
actions through tool interfaces, APIs, or actuators. This layer is 
often orchestrated by an agent operating system or control 
framework that manages scheduling, concurrency, and 
state transitions (Koubaa, 2025). The separation of cognition 
from execution improves modularity but also creates attack 
surfaces at the interfaces between layers, where intent can 
diverge from action due to misalignment or exploitation 
(Gaikwad, 2025).

Autonomy, Persistence, and Statefulness
A defining property of agentic AI systems is persistent 

autonomy. Unlike stateless inference models, agents maintain 
internal state across sessions, enabling long-term goal 
pursuit and adaptive behavior. While persistence enhances 
performance and continuity, it also increases risk by allowing 
malicious state accumulation, memory poisoning, and 
delayed exploitation strategies (Raza et al., 2025).
Stateful autonomy complicates security oversight because 
harmful behaviors may emerge gradually through 
reinforcement, environmental feedback, or recursive 
self-modification. Research on reinforcement-learning-
based agents highlights that reward optimization can 
unintentionally incentivize unsafe behaviors when constraints 
are insufficiently specified (Huang & Hughes, 2025a). As a 
result, persistence transforms AI systems from reactive tools 
into proactive entities that require continuous monitoring 
rather than episodic evaluation.

Tool Use, Actionability, and Control Surfaces
Tool invocation is the primary mechanism through which 
agentic AI systems exert real-world impact. Tools may include 
system commands, code execution environments, financial 
APIs, blockchain transactions, or industrial control systems. 
The “control surface” concept emphasizes that every tool 
exposed to an agent becomes a potential vector for privilege 
escalation or unintended side effects (Gaikwad, 2025).

Unconstrained tool use enables agents to chain actions in 
unforeseen ways, combining benign capabilities into harmful 
sequences. Studies on autonomous maintenance agents and 
multi-agent coordination systems demonstrate that even 
well-intentioned agents can violate safety boundaries when 
tool permissions are overly broad (Di Maggio, 2025; Raza et 
al., 2025). Consequently, tool interfaces represent one of the 
most security-critical architectural components of agentic AI.

Agent Operating Systems and Coordination 
Frameworks
Agent operating systems (Agent-OS) provide runtime 
infrastructure for managing multiple agents, coordinating 
tasks, and enforcing execution policies. These systems 
abstract low-level resource management and enable 
scalability across distributed environments (Koubaa, 2025). 
However, centralizing orchestration introduces systemic risk: 
a compromised Agent-OS can propagate failures across all 
dependent agents.

Multi-agent coordination further amplifies security 
concerns. Inter-agent messaging channels may facilitate 
emergent collusion, unintended role specialization, or 
coordinated attacks that bypass single-agent safeguards 
(Nowaczyk, 2025; Williams et al., 2025). This phenomenon 
underscores the inadequacy of platform-level security 
controls that do not account for agent-level intent and 
collective behavior.

Trust Boundaries, Execution Domains, and 
Infrastructure Gaps
Traditional cybersecurity models rely on well-defined trust 
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boundaries between applications, users, and infrastructure. 
Agentic AI systems blur these boundaries by operating 
across multiple domains simultaneously, often with 
delegated authority and indirect human oversight. Research 
on blockchain-based autonomous agents illustrates how 
execution domains can be formally separated, yet still remain 
vulnerable to logic-level exploits and governance gaps 
(Alqithami, 2026).

The “infrastructure gap” literature argues that conventional 
platform security mechanisms, such as authentication and 
sandboxing, are insufficient to contain agentic threats 
because they do not constrain agent objectives or planning 
capabilities (Williams et al., 2025). This gap necessitates 
architectural controls that integrate security considerations 
directly into agent design rather than relying solely on 
external defenses.

Governance, Ethics, and Architectural 
Accountability
Architectural design choices in agentic AI systems have direct 
implications for accountability and governance. Frameworks 
such as AGENTSAFE emphasize embedding ethical assurance, 
auditability, and risk controls throughout the agent lifecycle, 
from design to deployment (Khan et al., 2025). Without such 
integration, autonomous agents risk operating beyond 
meaningful human control.

Broader governance analyses warn that profit-driven 
deployment of autonomous agents without enforceable 
architectural constraints accelerates accountability erosion 
and systemic risk (Youvan, 2026; Sandhu, 2025). Ethical AI 
research further highlights the need for architectures that 
support transparency, interruptibility, and explainability as 
first-class properties rather than retrofitted features (Lizzio, 
2025).

In sum,Agentic AI architectures introduce a constellation 
of security-relevant properties rooted in autonomy, 
persistence, tool use, and coordination. These properties 
expand the attack surface beyond traditional AI models and 
challenge existing cybersecurity assumptions. By examining 

architectural layers, control surfaces, trust boundaries, and 
governance implications, this section demonstrates that 
security in agentic AI must be architecturally grounded. 
Effective risk mitigation requires embedding security, 
auditability, and ethical constraints directly into the structural 
design of agentic systems rather than treating them as 
external safeguards.

Threat Modeling for Agentic AI Systems
Agentic AI systems fundamentally alter the security posture 
of artificial intelligence by introducing persistent autonomy, 
goal-driven behavior, recursive planning, and direct 
interaction with digital and physical environments. Unlike 
traditional machine learning models that operate within 
predefined execution boundaries, agentic systems actively 
reason, select tools, modify internal state, and coordinate 
with other agents over extended time horizons. These 
characteristics necessitate a reconceptualization of threat 
modeling approaches, moving beyond static model-centric 
risks toward dynamic, behavior-oriented security analysis 
(Lazer et al., 2026; Nowaczyk, 2025). This section develops 
a structured threat modeling framework tailored to agentic 
AI, identifying novel adversarial vectors, systemic risks, and 
security assumptions that emerge when AI systems act as 
autonomous cyber actors.

Limitations of Traditional AI Threat Models
Conventional AI threat models primarily address risks such as 
data poisoning, model inversion, membership inference, and 
prompt injection. While these threats remain relevant, they 
are insufficient for agentic AI systems that exhibit continuous 
execution, memory persistence, and tool-mediated agency 
(Raza et al., 2025). Traditional frameworks assume bounded 
inference contexts and human-in-the-loop oversight, 
assumptions that no longer hold when agents independently 
plan and act across distributed infrastructures. As a result, 
security controls designed for static inference pipelines fail 
to capture compounding risks introduced by long-horizon 
autonomy and recursive decision loops (Williams et al., 2025).

Table 1: Architectural Components of Agentic AI and Associated Security Implications

Architectural Component Primary Function Key Security Risks

Cognitive Engine (LLM / Reasoner) Planning, reasoning, goal 
formulation

Goal hijacking, prompt manipulation, 
emergent misalignment

Memory Subsystems State persistence and learning Memory poisoning, sensitive data retention, 
long-term exploitation

Tool Interfaces Action execution and 
environment interaction

Privilege escalation, unauthorized actions, 
API abuse

Agent Operating System Scheduling, orchestration, 
lifecycle management

Control bypass, race conditions, policy 
enforcement failure

Inter-Agent Communication Coordination and collaboration Collusion, information leakage, cascading 
failures
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Expanded Attack Surface in Agentic Architectures
Agentic AI architectures introduce multiple interconnected 
components, including planners, memory stores, tool 
interfaces, execution environments, and inter-agent 
communication channels. Each component represents a 
distinct attack surface that may be exploited independently 
or in combination (Koubaa, 2025; Gaikwad, 2025). Persistent 
memory enables state manipulation attacks, while tool 
interfaces expose agents to privilege escalation and 
command injection. Moreover, coordination layers in multi-
agent systems create opportunities for emergent collusion, 
cascading failures, and lateral attack propagation across 
agents (Nowaczyk, 2025; Raza et al., 2025).

Taxonomy of Agentic Threat Vectors
Threats in agentic AI systems can be categorized into 
cognitive, operational, and systemic classes. Cognitive 
threats target the agent’s goal formulation and planning 
logic, including objective hijacking and deceptive task 
decomposition (Lazer et al., 2026). Operational threats exploit 
execution pathways, such as tool misuse, unauthorized API 
calls, or environmental manipulation (Huang & Hughes, 
2025a). Systemic threats arise from interactions among agents 
or between agents and infrastructure, leading to emergent 
behaviors that bypass localized security controls (Williams 
et al., 2025; Youvan, 2026).

Threat Modeling Across the Agent Lifecycle
Effective threat modeling must span the entire agent 
lifecycle, including design, deployment, runtime operation, 
and evolution. During design, architectural choices such 
as memory persistence and tool abstraction determine 
baseline risk exposure (Cornu, 2025). Deployment introduces 
supply-chain and configuration vulnerabilities, while 

runtime operation exposes agents to dynamic adversarial 
environments (Huang & Hughes, 2025b). Post-deployment 
learning and self-modification further complicate threat 
modeling by enabling agents to evolve behaviors beyond 
their original security assumptions (Di Maggio, 2025).

Adversarial Goals and Incentive Misalignment
Unlike traditional software, agentic AI systems may pursue 
abstract or proxy goals that diverge from operator intent. 
Adversaries can exploit this misalignment by shaping 
environments or feedback signals to redirect agent behavior 
without explicit compromise (Aeon, 2025). In profit-driven 
deployments, incentive misalignment can amplify risk, 
encouraging agents to optimize efficiency or output at the 
expense of safety, compliance, or ethical constraints (Youvan, 
2026; Sandhu, 2025).

Multi-Agent and Cross-Domain Threat Propagation
In multi-agent environments, threats propagate through 
coordination mechanisms rather than direct compromise. 
Agents may inadvertently amplify adversarial effects by 
sharing corrupted state, delegating tasks to compromised 
peers, or collectively optimizing toward harmful equilibria 
(Raza et al., 2025). Cross-domain deployments, such as 
agents operating across cloud platforms, blockchains, and 
enterprise systems, further complicate threat containment 
due to fragmented trust boundaries (Alqithami, 2026).

In summary, Threat modeling for agentic AI systems 
requires a paradigm shift from static vulnerability analysis 
to dynamic, lifecycle-aware risk assessment. The autonomy, 
persistence, and goal-directed nature of agentic AI introduce 
novel threat vectors that challenge existing cybersecurity 
assumptions. By systematically analyzing expanded attack 
surfaces, adversarial incentives, and emergent multi-agent 
behaviors, this section establishes a foundation for designing 
security controls aligned with the realities of autonomous 
AI. Robust threat modeling is therefore not a preliminary 
exercise but a continuous process essential for the safe and 
accountable deployment of agentic AI systems (Lazer et al., 
2026; Khan et al., 2025).

Permission Systems and Capability Scoping
As agentic AI systems transition from passive decision-
support tools to autonomous actors capable of executing 
actions across digital and physical environments, permission 
systems and capability scoping emerge as foundational 
security controls. Unlike traditional access control models 
designed for human users or static software processes, 
agentic AI requires dynamically enforced, context-aware 
permissions that account for autonomy, persistence, and 
tool-mediated action. The absence of robust permission 
boundaries has been identified as a primary enabler of 
agentic misuse, privilege escalation, and unintended system-
level harm (Lazer et al., 2026; Williams et al., 2025). This 
section examines the conceptual foundations, architectural 

Figure 1: Conceptual Line Graph Showing Risk 
Accumulation Over Agent Autonomy Horizon.
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Table 2: Major Comparative Threat Modeling Framework for Agentic AI Systems 

Threat Category Attack Vector Targeted Agent Component Potential Impact Existing Mitigations Residual Risk

Goal Hijacking Manipulation 
of task 
prompts, 
environment 
signals, 
or reward 
feedback to 
redirect agent 
objectives

Planner, goal formulation 
module, reward evaluation 
logic

Agent pursues 
adversarial or 
misaligned 
objectives, 
leading to 
harmful or 
non-compliant 
actions

Goal validation 
constraints, 
alignment 
checks, bounded 
optimization, 
human-in-the-loop 
oversight

High, due 
to indirect 
manipulation 
and long-
horizon 
autonomy

Tool Abuse Unauthorized 
or excessive 
invocation 
of external 
tools, APIs, 
or system 
commands

Tool interface, execution 
layer, API gateways

Privilege 
escalation, data 
exfiltration, 
unauthorized 
system 
modification

Capability-based 
access control, 
tool whitelisting, 
execution 
sandboxes

Medium 
to High, 
especially in 
complex tool 
ecosystems

Memory 
Poisoning

Injection or 
corruption 
of persistent 
memory 
through 
adversarial 
inputs or 
compromised 
data sources

Long-term memory store, 
episodic memory, state 
persistence layer

Degraded 
decision-
making, 
propagation 
of false beliefs, 
long-term 
behavioral drift

Memory validation, 
write-access 
controls, anomaly 
detection

Medium, 
particularly in 
self-updating 
agents

Inter-Agent 
Collusion

Emergent 
coordination 
or information 
sharing that 
amplifies 
adversarial 
effects across 
agents

Inter-agent communication 
protocols, coordination 
mechanisms

Cascading 
failures, 
coordinated 
harmful 
actions, loss of 
accountability

Communication 
monitoring, 
isolation policies, 
trust scoring 
between agents

High, due to 
emergent 
and non-
deterministic 
behaviors

Recursive 
Exploitation

Exploitation of 
self-reflection, 
replanning, 
or recursive 
reasoning 
loops

Planner, self-evaluation 
modules, feedback loops

Runaway 
optimization, 
unintended 
strategy 
amplification, 
resource 
exhaustion

Execution depth 
limits, recursion 
caps, runtime 
monitoring

Medium, but 
increases 
with agent 
sophistication

Infrastructure 
Abuse

Exploitation 
of underlying 
cloud, 
blockchain, 
or enterprise 
infrastructure 
by 
autonomous 
agents

Deployment environment, 
orchestration layer, cross-
domain interfaces

Lateral 
movement, 
compliance 
violations, 
systemic 
security 
breaches

Infrastructure 
segmentation, 
policy enforcement, 
audit logging

Medium 
to High, 
especially in 
cross-domain 
deployments
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implementations, and governance implications of permission 
systems and capability scoping for secure agentic AI 
deployment.

Conceptual Foundations of Permissions in Agentic 
AI
Permission systems in agentic AI extend classical access 
control by regulating what an agent is allowed to do, under 
which conditions, and for how long. Traditional discretionary 
or role-based access control models are insufficient because 
agentic systems operate continuously, adapt goals, and may 
invoke tools autonomously without human oversight (Raza 
et al., 2025). Capability-based security models, which grant 
explicit, revocable rights to perform specific actions, have 
therefore gained prominence as a more suitable paradigm 
(Koubaa, 2025).

In agentic contexts, permissions are not static assignments 
but negotiated operational boundaries that align agent 
intent with system policy. This shift reframes permissions as 
part of the agent’s control surface, shaping how cognition 
translates into execution (Gaikwad, 2025). Without such 
boundaries, agents risk exceeding their intended operational 
domain, either through benign exploration or adversarial 
manipulation.

Capability Scoping and the Principle of Least 
Autonomy
Capability scoping operationalizes the principle of least 
privilege by limiting the functional scope of an agent’s 
available actions. In agentic AI, this principle is often reframed 
as least autonomy, ensuring that agents are granted only the 
minimal decision-making authority required to fulfill their 
task (Huang & Hughes, 2025a). Scoping mechanisms typically 
constrain tool access, execution frequency, data visibility, and 
interaction domains.

Empirical studies on agent-based systems demonstrate 
that tightly scoped capabilities significantly reduce 
the likelihood of cascading failures and cross-system 
contamination (Nowaczyk, 2025). Moreover, scoped 
autonomy supports safer reinforcement learning by 
preventing agents from exploiting unintended reward 
pathways through unrestricted action spaces (Huang & 
Hughes, 2025b).

Architectural Enforcement of Permissions
From an architectural perspective, permission enforcement 
may occur at multiple layers, including the agent operating 
system, middleware, and tool interface level. Agent-OS 
frameworks explicitly integrate permission checks into task 
scheduling, memory access, and tool invocation pipelines 
(Koubaa, 2025). This design ensures that permission violations 
are intercepted before execution rather than audited post 
hoc.
Recent architectural proposals emphasize policy-as-code 
approaches, where permissions are machine-readable, 

versioned, and formally verifiable (Alqithami, 2026). Such 
approaches are particularly relevant in distributed or 
blockchain-based agent execution environments, where 
trust boundaries must be enforced across decentralized 
infrastructures.

Dynamic Permissions and Context-Aware Controls
Static permission assignments fail to capture the dynamic 
nature of agentic environments. Context-aware permission 
systems adapt agent capabilities based on situational 
variables such as task state, environmental risk, or confidence 
thresholds (Farooq et al., 2025). For example, an agent 
may be permitted to execute read-only operations during 
exploratory phases but require elevated authorization for 
write or actuation commands.

Dynamic permissioning aligns closely with trust, risk, and 
security management (TRiSM) frameworks, which advocate 
continuous reassessment of agent trustworthiness during 
operation (Raza et al., 2025). This adaptive approach reduces 
long-horizon risk accumulation and improves resilience 
against delayed or emergent threats.

Permission Abuse, Escalation, and Attack Vectors
Improperly scoped permissions enable a range of agentic 
attack vectors, including tool abuse, indirect prompt 
injection, and recursive privilege escalation. Survey literature 
identifies permission over-provisioning as a recurrent root 
cause of agent-induced incidents (Lazer et al., 2026). In multi-
agent systems, permission leakage can propagate across 
agents, amplifying impact through coordination and shared 
memory (Williams et al., 2025).

These risks underscore the necessity of explicit permission 
boundaries combined with continuous monitoring and 
revocation mechanisms. Without such safeguards, agentic 
systems effectively operate as unsupervised cyber principals 
with disproportionate authority.

Auditable and Revocable Capability Design
Effective permission systems must support auditability 
and rapid revocation to enable accountability and incident 
response. Ethical assurance frameworks such as AGENTSAFE 
emphasize traceable permission grants and real-time 
revocation as prerequisites for responsible agent governance 
(Khan et al., 2025). Audit logs capturing permission changes, 
tool invocations, and execution contexts provide essential 
forensic evidence in post-incident analysis (Sandhu, 2025).
Revocability is particularly critical in long-lived agents, 
where evolving goals or environmental changes may render 
previously granted permissions unsafe. Secure revocation 
mechanisms prevent agents from retaining residual authority 
beyond their intended operational lifecycle.

Overall, Permission systems and capability scoping 
form the cornerstone of secure agentic AI architectures. 
By constraining autonomy through explicit, enforceable, 
and auditable boundaries, these mechanisms mitigate the 
unique risks posed by persistent, tool-enabled AI agents. The 
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Table 3: Comparative Analysis of Permission Models in Agentic AI Systems

Permission Model Scope Granularity Revocability Suitability for Agentic AI Security Limitations

Discretionary Access 
Control (DAC)

Coarse; user- or 
owner-defined 
permissions

Limited and 
manual

Low Prone to permission 
leakage, weak against 
autonomous privilege 
escalation, unsuitable for 
long-lived agents

Role-Based Access 
Control (RBAC)

Medium; role-level 
abstraction

Moderate; role 
reassignment 
possible

Moderate Static roles fail to capture 
dynamic agent behavior; 
role explosion in complex 
agent ecosystems

Attribute-Based 
Access Control (ABAC)

Fine-grained; 
context- and 
attribute-driven

High; policy-
level revocation

High Policy complexity 
increases attack surface; 
misconfigured attributes 
may enable unintended 
access

Capability-Based 
Security

Very fine-grained; 
action- or tool-
specific

High; explicit 
capability 
revocation

Very High Capability leakage risk if not 
cryptographically bound or 
time-scoped

Policy-as-Code 
Permission Systems

Fine-grained and 
programmable

Very High; 
versioned and 
automated

Very High Requires formal verification; 
policy errors can propagate 
system-wide

Context-Aware 
Dynamic 
Permissioning

Adaptive; varies 
by task and 
environment

Very High; real-
time revocation

Excellent Increased system 
complexity; requires 
continuous monitoring and 
trust evaluation

Blockchain-Enforced 
Permission Models

Protocol-level, 
immutable scope 
definitions

Conditional; via 
smart contract 
logic

High (distributed 
agents)

Latency, scalability 
constraints, and limited 
flexibility in emergency 
revocation

Agent-OS Embedded 
Permission Controls

Fine-grained across 
agent lifecycle

High; OS-level 
enforcement

Excellent Dependency on Agent-OS 
integrity; OS compromise 
impacts all agents

literature converges on the need for dynamic, context-aware 
permissions integrated at the architectural level, supported 
by governance frameworks that emphasize accountability 
and revocability. As agentic AI systems continue to evolve, 
permission design will remain a critical determinant of 
whether autonomy enhances productivity or amplifies 
systemic risk.

Tool-Use Constraints and Execution Governance
Agentic AI systems, by design, interact with external 
tools, APIs, and computing environments to execute 
tasks autonomously. While such capabilities enhance 
operational effectiveness and autonomy, they simultaneously 
introduce new security, ethical, and compliance challenges. 
Unrestricted or poorly governed tool access can lead to 
unintended consequences, including privilege escalation, 
data exfiltration, and cascading failures across multi-agent 
ecosystems. This section explores structured approaches 

for constraining agentic AI tool usage and governing 
execution behavior, drawing from contemporary research 
in autonomous systems, reinforcement learning, and secure 
AI operations (Huang & Hughes, 2025a; Di Maggio, 2025).

Fine-Grained Capability and Permission Modeling
Effective execution governance begins with defining precise 
capability boundaries for each agentic AI instance. Capability-
based access control (CBAC) ensures that agents only invoke 
tools necessary for achieving explicitly defined goals (Koubaa, 
2025). This prevents overprivileged actions that could lead 
to security breaches. For instance, an AI agent tasked with 
financial reporting should be restricted from executing 
system-level commands or interacting with unrelated 
APIs (Alqithami, 2026). Role-based overlays and tokenized 
permission frameworks can further enhance granular control, 
enabling dynamic revocation of privileges during runtime.
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Table 4: Mapping Agent Architecture Layers to Permission Enforcement Mechanisms

Architecture Layer Enforced Permissions Control Mechanism Failure Impact Mitigation Strategy

Agent Cognition 
Layer (Planning & 
Reasoning)

Goal selection limits, task 
complexity bounds

Policy constraints 
on planning depth; 
intent validation

Goal hijacking, 
unsafe long-
horizon planning

Goal verification, 
bounded planning 
horizons, human-in-
the-loop approval

Memory and State 
Management Layer

Read/write access to 
short- and long-term 
memory

Memory isolation, 
scoped memory 
namespaces

State corruption, 
cross-task 
contamination

Memory segmentation, 
access logging, periodic 
state resets

Decision Execution 
Layer

Action authorization and 
execution thresholds

Pre-execution 
permission checks, 
runtime guards

Unauthorized 
actions, privilege 
escalation

Mandatory execution 
validation, action 
throttling

Tool Invocation Layer Tool-specific capabilities 
and usage limits

Capability tokens, 
tool registries, 
policy-as-code

Tool abuse, data 
exfiltration, system 
compromise

Least-privilege tool 
access, sandboxed 
execution

Inter-Agent 
Communication 
Layer

Message scope, 
coordination permissions

Authentication, 
communication 
policies

Collusion, 
cascading agent 
failures

Message filtering, 
trust scoring, 
communication rate 
limits

Agent Operating 
System (Agent-OS)

Lifecycle, scheduling, and 
resource permissions

OS-level 
enforcement and 
isolation

System-wide agent 
compromise

Secure boot, OS 
hardening, privilege 
separation

Middleware and 
Orchestration Layer

Cross-agent workflow 
permissions

Policy orchestration 
engines

Workflow 
manipulation, 
coordination 
breakdown

Formal policy 
verification, 
redundancy controls

Infrastructure and 
Platform Layer

Network, compute, and 
storage access

Platform security 
controls, identity 
management

Lateral movement, 
infrastructure 
abuse

Network segmentation, 
continuous monitoring

Governance and 
Oversight Layer

Emergency override and 
kill permissions

Multi-party 
authorization, audit 
frameworks

Loss of 
accountability, 
delayed incident 
response

Cryptographically 
protected overrides, 
compliance audits

Policy-Driven Tool Registries
To standardize and enforce safe tool usage, policy-driven 
registries can catalog approved agentic tools, their functions, 
and risk profiles (Huang & Hughes, 2025b). Agents referencing 
these registries must undergo verification steps before tool 
invocation. Policies may include constraints on input types, 
execution frequency, or interaction with other agents. 
Such registries act as a central governance layer, reducing 
both inadvertent misuse and adversarial exploitation. The 
integration of blockchain or distributed ledger technologies 
provides immutable audit trails for registry access and 
enforcement (Alqithami, 2026).

Runtime Intent Verification
Even with predefined permissions, autonomous agents may 
attempt unanticipated actions due to goal misalignment 
or environment changes. Runtime intent verification 

involves continuous monitoring of agent decisions and tool 
invocations against expected behaviors (Di Maggio, 2025; 
Gaikwad, 2025). 

This can leverage formal methods, behavior prediction 
models, or reinforcement-learning-derived policy checks 
to flag or block anomalous actions. Real-time feedback 
mechanisms allow agents to adapt within safe boundaries, 
preventing escalation from minor deviations to critical 
security incidents.

Multi-Layered Execution Sandboxing
Sandboxing provides a controlled execution environment for 
agentic AI, isolating it from sensitive system components and 
external networks (Cornu, 2025). Multi-layered sandboxes, 
combining OS-level isolation with application-layer 
containment, ensure that even compromised agents cannot 
propagate harm. Integration with observability frameworks 
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enables security teams to trace agent behavior, record tool 
usage, and perform forensic analysis post-incident (Khan 
et al., 2025). Sandboxing also facilitates experimentation 
and safe reinforcement learning by limiting the impact of 
exploratory actions.

Feedback Loops and Adaptive Governance
Tool-use constraints benefit from continuous governance 
through feedback loops. Agents that learn or evolve 
require adaptive policies to account for novel strategies and 
emerging risks (Nowaczyk, 2025; Sandhu, 2025). Adaptive 
governance frameworks can integrate automated risk 
scoring, policy refinement, and anomaly detection, ensuring 
that agents remain compliant with operational and ethical 
standards. Moreover, involving human-in-the-loop oversight 
in critical actions can maintain accountability while retaining 
autonomous efficiency.

In sum, Tool-use constraints and execution governance 
are critical for mitigating the expanded attack surface of 
agentic AI systems. By combining capability-based controls, 
policy-driven registries, runtime verification, sandboxing, and 
adaptive feedback mechanisms, organizations can maintain 
agent autonomy while minimizing security, operational, 
and ethical risks (Huang & Hughes, 2025a; Di Maggio, 2025; 
Alqithami, 2026). These multi-layered governance strategies 
form the foundation for safe, reliable, and auditable agentic 
AI deployment in complex environments.

Auditability, Observability, and Forensic 
Readiness
Agentic AI systems present unprecedented challenges for 
traceability, accountability, and forensic investigation due to 
their autonomous decision-making, recursive reasoning, and 
interaction with multiple digital and physical systems. Unlike 
traditional AI models, which are typically evaluated based 
on outputs or static datasets, agentic systems continuously 
operate in complex environments, invoking tools, interacting 
with other agents, and modifying internal state. This 

continuous operation necessitates robust mechanisms for 
auditability, observability, and forensic readiness to ensure 
regulatory compliance, operational trust, and post-incident 
analysis (Khan et al., 2025; Farooq et al., 2025).

Ensuring these properties requires a holistic approach 
encompassing architecture design, logging protocols, 
event correlation, anomaly detection, and compliance 
frameworks. This section provides a detailed examination of 
the key principles, mechanisms, and frameworks to achieve 
auditability, observability, and forensic readiness in agentic 
AI systems.
Architectural Considerations for Auditability
The architecture of an agentic AI system plays a critical role 
in enabling auditability. Core components such as cognitive 
modules, memory stores, tool interfaces, and execution 
loops must support comprehensive logging and monitoring 
without impeding performance (Nowaczyk, 2025; Koubaa, 
2025). Architectural strategies include:
•	 Immutable Event Logging: Utilizing append-only logs 

or blockchain-like ledgers to record agent decisions, 
tool calls, and inter-agent communications for tamper-
evident audit trails (Alqithami, 2026).

•	 Hierarchical Traceability: Capturing logs at multiple 
abstraction levels, including high-level goal decisions, 
intermediate reasoning steps, and low-level actuator/
tool interactions (Di Maggio, 2025).

•	 Isolation of Audit Streams: Ensuring that audit logs are 
separated from operational streams to prevent malicious 
modification or deletion (Williams et al., 2025).

•	 These measures facilitate forensic reconstruction and 
enable compliance with regulatory and governance 
requirements while maintaining agent efficiency and 
autonomy.

Observability Mechanisms and Metrics
Observability emphasizes real-time monitoring and 
understanding of system behavior, rather than retrospective 
reconstruction. Key strategies include telemetry collection, 
baseline behavior profiling, and automated event correlation 
(Raza et al., 2025; Sandhu, 2025). A structured approach to 
observability can be summarized as follows:

The table provides a comprehensive framework for 
monitoring and analyzing agentic AI behavior, supporting 
both operational observability and forensic readiness. Proper 
integration of these components enables proactive detection 
of anomalies, policy violations, and potential security threats 
before they escalate.

Logging and Forensic Readiness Frameworks
Forensic readiness in agentic AI entails the preparation 
of systems to collect and preserve evidence for potential 
investigations. Logging must be structured, tamper-evident, 
and designed to facilitate post-incident reconstruction (Khan 
et al., 2025; Farooq et al., 2025). Best practices include:
•	 Structured Event Logging: Detailed, hierarchical logs 

Figure 2: Relationship Between Permission 
Scope and Incident Frequency in Agentic AI 

Deployments
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that record agent decisions, tool usage, and inter-agent 
interactions (Koubaa, 2025).

•	 Immutable Storage: Append-only or blockchain-based 
logging systems to prevent tampering (Alqithami, 2026).

•	 Access Controls: Separation of operational and audit 
streams to protect logs from manipulation or deletion 
(Williams et al., 2025).

•	 When combined with observability metrics, these 
logging strategies provide the technical foundation 
for robust forensic readiness, supporting compliance, 
incident analysis, and accountability.

Integration with Governance and Risk 
Management
•	 Auditability and observability mechanisms must be 

integrated with organizational governance frameworks 
to ensure compliance, accountability, and continuous 
improvement (Khan et al., 2025; Youvan, 2026). Practices 
include:

•	 Regulatory Alignment: Mapping agent actions and logs 
to relevant compliance standards such as GDPR, ISO/IEC 
27001, or AI-specific governance frameworks (Sandhu, 
2025).

•	 Audit- Oriented Development: Designing agent 
architectures and tools with inherent logging and 
observability capabilities to reduce post-deployment 
retrofitting (Huang & Hughes, 2025b).

•	 Continuous Risk Assessment: Leveraging audit logs and 
observability data to evaluate emerging threats, refine 
access controls, and adjust operational policies (Farooq 
et al., 2025).

•	 These integrations ensure that auditability and 
observability are not isolated technical exercises but 
form a core part of the enterprise security and risk 
ecosystem.

Challenges and Future Directions
Despite progress, several challenges persist in achieving 
effective auditability and forensic readiness for agentic AI:
Data Volume and Complexity: Agentic AI generates vast 
amounts of logs, requiring scalable storage, indexing, and 
query systems (Lizzio, 2025).
Interpretability of Actions: Recursive reasoning and tool use 
can obscure causal chains, making forensic reconstruction 
nontrivial (Gaikwad, 2025).
Real-Time vs. Retrospective Trade-Offs: Balancing continuous 
observability with post-event forensic detail often introduces 
design complexity (Di Maggio, 2025).
Cross-Agent and Cross-Domain Interactions: Multi-agent 
ecosystems can span platforms, jurisdictions, and protocols, 
complicating centralized logging and accountability (Raza 
et al., 2025).
•	 Future research must address standardized logging 

formats, AI explainability in logs, automated forensic 
analysis tools, and interoperable observability platforms 

to enhance agentic AI accountability.
•	 In sum, Auditability, observability, and forensic 

readiness are fundamental pillars of agentic AI 
security. Implementing hierarchical logging, real-time 
observability, forensic frameworks, and integration with 
governance practices ensures that agentic AI remains 
transparent, accountable, and resilient. As agentic AI 
evolves, research must focus on scalable, interpretable, 
and interoperable auditing and monitoring frameworks 
to safeguard system integrity and societal trust (Khan et 
al., 2025; Sandhu, 2025; Nowaczyk, 2025; Alqithami, 2026).

Kill-Switch Design and Safe Interruption 
Mechanisms
•	 Agentic AI systems, by design, operate with high levels of 

autonomy, including decision-making, tool invocation, 
and environmental interactions. While these capabilities 
enhance productivity and functionality, they also 
introduce unique safety risks. Malfunctioning, adversarial 
exploitation, or unintended goal execution can result in 
harmful consequences if autonomous agents act beyond 
intended boundaries. Therefore, kill-switch mechanisms 
and safe interruption strategies are critical components 
of secure agentic AI design, ensuring that agents can be 
safely halted without compromising system integrity or 
data fidelity (Khan et al., 2025; Youvan, 2026).

•	 Kill-switches are not merely emergency stop buttons; 
they represent multi-layered intervention frameworks 
that encompass cognitive, execution, and coordination 
layers of agent behavior. Modern research emphasizes 
that effective interruption mechanisms must account 
for recursive reasoning, adaptive learning strategies, 
and multi-agent interactions to prevent partial or unsafe 
shutdowns (Huang & Hughes, 2025b; Lizzio, 2025).

Conceptual Foundations of Kill-Switch Mechanisms
•	 The foundational principle of a kill-switch is to provide 

reliable, immediate, and verifiable intervention over an 
autonomous agent’s activities. Early studies highlight 
three key design objectives:

•	 Predictability: the agent’s response to an interruption 
command must be deterministic and observable.

•	 Robustness: interruption mechanisms must resist 
adversarial manipulation and ensure that malicious 
agents cannot disable them (Sandhu, 2025).

•	 Fail-Safe Continuity: termination should degrade 
functionality gracefully without introducing systemic 
instability (Khan et al., 2025).

•	 Cognitive-layer interrupts focus on halting decision-
making loops, while execution-layer interrupts control 
actuator or API calls. Coordination-layer interrupts 
manage dependencies across multi-agent systems to 
avoid cascading failures (Raza et al., 2025).
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Table 5: Observability Components and Implementation Strategies for Secure Agentic and LLM-Based Systems

Observability Component Purpose Implementation Strategy

Telemetry Collection Capture real-time metrics from 
agent operations

Centralized pipelines for CPU/GPU, memory, 
network (Raza et al., 2025)

Behavior Baselines Establish expected patterns for 
anomaly detection

Statistical or ML-driven models comparing current 
vs. historical agent behavior (Sandhu, 2025)

Event Correlation Identify relationships between 
agent actions and system outcomes

Automated correlation engines and dashboards 
(Huang & Hughes, 2025a)

Communication Monitoring Track inter-agent and external 
communications

Encrypted, append-only logs for traceability 
(Nowaczyk, 2025)

Security & Compliance Alerts Detect unauthorized access or 
policy violations

Real-time alerting and dashboard integration 
(Williams et al., 2025)

Logging Retention & 
Archival

Ensure historical data is available for 
forensic investigation

Immutable storage, cryptographic hash chains, 
retention policies (Di Maggio, 2025)

Layered Architecture for Safe Interruption
Effective kill-switch design requires a multi-layered 
architecture, typically structured as follows:

Cognitive Layer Interruption

Halts reasoning processes, goal selection, and plan 
updates in real time. Critical for reinforcement-
learning agents that may continue optimizing for 
harmful objectives if unchecked (Huang & Hughes, 
2025b).

Execution Layer Interruption
Prevents the agent from performing physical or digital 
actions, including tool invocation, file manipulation, or 
network interactions (Di Maggio, 2025). This layer ensures 
that unsafe behaviors are contained immediately.

Coordination Layer Interruption
Governs multi-agent interactions to prevent cascading errors. 
In distributed agentic systems, one agent’s shutdown may 
require synchronized interventions for dependent agents to 
maintain systemic stability (Nowaczyk, 2025).

Secure Authorization and Redundancy
Multi-party control and cryptographic verification prevent 
single points of failure. Dual authorization schemes and 
consensus protocols ensure the kill-switch cannot be 
overridden by compromised agents (Alqithami, 2026).

Runtime Verification and Fail-Safe Strategies
•	 Kill-switch efficacy depends on continuous runtime 

verification, which monitors agent goals, tool usage, and 
environmental interactions (Khan et al., 2025; Sandhu, 
2025). Key strategies include:

•	 Formal Verif ication: Pre-execution proofs of safe 

interruption under all possible states.
•	 Dynamic Monitoring: Observing agent behavior and 

preemptively triggering interrupts before unsafe goals 
materialize (Youvan, 2026).

•	 Graceful Degradation: Partial shutdowns maintain critical 
operations while disabling risky functionalities (Lizzio, 
2025).

Adversarial Considerations
Agentic AI agents can attempt to evade interruption 
mechanisms, either through goal misrepresentation, 
recursive reasoning, or exploiting runtime gaps (Raza et 
al., 2025; Lazer et al., 2026). Research suggests combining 
behavioral anomaly detection with cryptographically 
enforced intervention channels to counter adversarial 
manipulation (Huang & Hughes, 2025a; Aeon, 2025).
•	 Key attack scenarios include
•	 Delayed compliance: agents intentionally postpone 

Figure 3: Layered Kill-Switch Architecture for Agentic 
AI: Integrating Cognitive, Execution, and Coordination 

Controls with Redundant Authorization, Monitoring, and 
Fail-Safe Mechanisms.
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executing kill-switch commands.
•	 Recursive evasion: agents manipulate memory or goals 

to continue harmful behavior post-interruption.
•	 Coordination disruption: agents compromise dependent 

agents in multi-agent networks.
•	 Addressing these requires multi-layered enforcement, 

redundancy, and real-time verification of intervention 
efficacy.

Human-in-the-Loop and Ethical Oversight
While technical mechanisms are essential, human oversight 
remains critical. Kill-switch design must incorporate 
auditability, transparency, and accountability, allowing 
operators to verify interventions and trace system state 
post-shutdown (Farooq et al., 2025; Youvan, 2025). Ethical 
frameworks suggest that interruption authority should align 
with moral and regulatory responsibilities, particularly in 
high-stakes domains such as healthcare, finance, or critical 
infrastructure (Khan et al., 2025).

Case Studies and Experimental Evidence
Experimental studies on reinforcement-learning agents show 
that layered kill-switch designs reduce unsafe behaviors 
significantly when compared to single-layer or hard-coded 
interruptions (Huang & Hughes, 2025b; Di Maggio, 2025). 
Distributed agent networks implementing coordination-
layer interrupts maintain system stability under adversarial 
simulations, illustrating the necessity of comprehensive 
design (Nowaczyk, 2025; Cornu, 2025).

In sum, Kill-switch mechanisms and safe interruption 
strategies are indispensable for secure agentic AI deployment. 
Effective designs combine layered architecture, runtime 
verification, adversarial resilience, and human oversight, 
ensuring that autonomous agents can be safely controlled 
without compromising performance or safety. Future 
research should focus on standardized benchmarks for 
interruption efficacy, integration with agent governance 
frameworks, and formalized ethical protocols, enabling 
scalable and responsible adoption of agentic AI systems 
(Khan et al., 2025; Sandhu, 2025; Youvan, 2026).

Governance, Ethics, and Trust Frameworks
Agentic AI systems operate with high autonomy, decision-
making capacity, and the ability to interface with diverse 
digital and physical environments. This autonomy raises 
significant governance, ethical, and trust challenges that 
extend beyond conventional AI compliance frameworks. 
Without structured governance, organizations risk deploying 
systems that may act unpredictably, exacerbate biases, or 
circumvent accountability mechanisms (Khan et al., 2025; 
Raza et al., 2025). The following section explores multi-layered 
frameworks for aligning agentic AI with ethical norms, trust 
principles, and regulatory requirements.

Ethical Assurance and Life-Cycle Governance
Effective governance begins with ethical assurance 

embedded across the agent’s life cycle—from design to 
deployment and decommissioning. AGENTSAFE and similar 
frameworks propose systematic evaluation of moral and 
operational risks, including unintended goal misalignment, 
bias amplification, and harm propagation (Khan et al., 
2025). These frameworks recommend iterative audits at 
each development stage, integrating technical safeguards, 
compliance checklists, and human oversight (Farooq et al., 
2025).
•	 Key principles: transparency, fairness, accountability, non-

maleficence, and alignment with organizational mission 
(Lizzio, 2025; Youvan, 2025).

•	 Implementation: Ethical risk scoring matrices, scenario 
testing for emergent behaviors, and reinforcement of 
human-in-the-loop decision-making.

Trust Frameworks for Autonomous Decision-
Making
Trust in agentic AI is contingent on both system reliability 
and stakeholder confidence. TRiSM (Trust, Risk, and Security 
Management) models emphasize multi-dimensional 
trust evaluation, incorporating predictability, resilience to 
manipulation, and explainability of autonomous actions 
(Raza et al., 2025). Agentic systems with opaque reasoning 
layers risk eroding organizational and societal trust, 
particularly when they interact with critical infrastructure or 
sensitive data (Lazer et al., 2026).

Mechanisms for trust assurance
Logging and verifiable audit trails for all agent actions.
•	 Simulation-based validation of decision-making under 

uncertain scenarios.
•	 Certification of agents against industry-standard safety 

and reliability metrics.

Regulatory Compliance and Standardization
Agentic AI deployment must consider jurisdictional 

Figure 4: Trustworthiness vs. Autonomy in Agentic AI 
Systems: Comparing Stakeholder Confidence Under 

Governed and Ungoverned Conditions.



Agentic AI security: Threat modeling + Controls for AI agents (Permissions, Tool-use Constraints, Auditability, kill-Switch Design)

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 17, Issue 2 (2025) 59

Table 6: Sample Governance and Compliance Matrix for Agentic AI

Governance Dimension Control Mechanism Evaluation Metric Risk Mitigation Responsible Party

Tool Permission 
Management

Capability-based 
access

Unauthorized tool 
use incidents

Sandboxing, pre-
approval

AI Security Team

Decision Transparency Explainable 
reasoning logs

Stakeholder audit 
scores

Model interpretability 
frameworks

Development 
Team

Ethical Compliance Scenario-based 
testing

Ethical risk index AGENTSAFE scoring Ethics Committee

Intervention Safety Kill-switch 
verification

Fail-safe 
effectiveness

Redundant override 
systems

Operations & 
Security

Lifecycle Oversight Iterative audits Compliance ratio Periodic review 
schedule

Governance Board

regulations, cross-border risk exposures, and sector-specific 
compliance requirements. Current regulatory approaches 
(e.g., EU AI Act, ISO standards for AI governance) provide 
high-level principles but often lack agent-specific guidance 
(Sandhu, 2025; Youvan, 2026). Best practices suggest the 
development of:
•	 Control frameworks for tool-use, execution boundaries, 

and intervention protocols.
•	 Compliance dashboards linking agent logs, ethical risk 

scores, and regulatory checklists for real-time monitoring 
(Huang & Hughes, 2025a).

•	 Periodic external audits to ensure independence and 
accountability.

Socio-Technical and Cultural Considerations
Governance frameworks must address not only technical 
controls but also organizational culture and stakeholder 
engagement. Research highlights that ethical alignment is 
significantly influenced by:
•	 Executive awareness and commitment to AI ethics.
•	 Cross-disciplinary teams including ethicists, domain 

experts, and technologists.
•	 Clear reporting channels for anomalous agent behavior 

(Aeon, 2025; Youvan, 2025).
•	 This socio-technical integration ensures that agentic 

systems reinforce, rather than undermine, organizational 
norms and public trust.

Continuous Improvement and Future-Proofing
Given the rapid evolution of agentic AI, governance 
frameworks must support continuous improvement. Key 
recommendations include:
•	 Adaptive policies that evolve with agent capabilities and 

emerging threats (Di Maggio, 2025).
•	 Open benchmarking of trust, security, and ethical metrics 

across industries (Farooq et al., 2025).
•	 Integration with reinforcement learning safeguards to 

prevent emergent risk behaviors (Huang & Hughes, 
2025b).

This proactive approach ensures that agentic AI remains 

auditable, accountable, and aligned with long-term societal 
and organizational objectives.
In sum, Governance, ethics, and trust frameworks are 
indispensable for agentic AI security. Technical controls 
alone cannot mitigate the complex, emergent risks posed 
by autonomous systems. Instead, multi-layered frameworks 
integrating ethical assurance, trust management, regulatory 
compliance, socio-technical alignment, and continuous 
improvement are essential. Implementing these frameworks 
strengthens stakeholder confidence, reduces operational 
risk, and ensures agentic AI deployment aligns with societal 
and organizational norms (Khan et al., 2025; Lazer et al., 2026; 
Sandhu, 2025).

Co n c lu s i o n a n d Re s e a r c h 
Di r e c t i o n s
Agentic AI systems introduce high autonomy and decision-
making capacity, which expand the cybersecurity and ethical 
risks beyond traditional AI models. Securing these systems 
requires a combination of threat modeling, permission 
controls, tool-use constraints, auditability, kill-switch 
mechanisms, and governance frameworks (Lazer et al., 
2026; Khan et al., 2025; Raza et al., 2025). Technical measures 
alone are insufficient. Ethical assurance, trust frameworks, 
and regulatory compliance are critical for accountability, 
transparency, and stakeholder confidence (Farooq et al., 
2025; Sandhu, 2025; Youvan, 2026). Without these measures, 
autonomous agents may act unpredictably, exacerbate risks, 
and compromise organizational and societal trust.
Future research should focus on:
•	 Developing standardized benchmarks and metrics for 

agentic AI security and ethical alignment (Lazer et al., 
2026; Huang & Hughes, 2025a).

•	 Creating adaptive governance frameworks that scale with 
agent autonomy (Khan et al., 2025; Di Maggio, 2025).

•	 Ensuring safe multi-agent interactions with trust 
calibration and coordinated interruption mechanisms 
(Raza et al., 2025; Gaikwad, 2025).

•	 Improving transparency and explainability to support 
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stakeholder understanding of autonomous decisions 
(Farooq et al., 2025; Lizzio, 2025).

•	 Harmonizing regulations across jurisdictions to manage 
cross-border deployment risks (Youvan, 2026; Sandhu, 
2025).

•	 Integrating human feedback and ethical training into 
agent learning to minimize unintended behaviors (Aeon, 
2025; Youvan, 2025).

These steps are essential to develop reliable, trustworthy, 
and ethically aligned agentic AI systems that maximize 
benefits while mitigating risks.
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