
Ab s t r ac t
This paper addresses the tough issues pertaining to water level control issues in coupled-tank systems, which might be 
prevalent specifically to Process industries but has also seen widespread nonlinearities in its behaviour being sensitivity 
to disturbances of any kind. Here we posed a novel Adaptive Neural Network control-based strategy which excellently 
compensates parameter uncertainties, for machine nonlinearities, and influx disturbances. This control architecture 
perfectly combines a conventional Proportional-Integral (PI) controller with a single hidden-layer neural network offering 
online weight adaptation. Here to approximate and cancel unknown nonlinearities Neural Network based compensator 
accompany radial basis capabilities has been employed, while the adaption law has been devised Lyapunov Stability 
theory to insure stability of all closed-loop processes. Extensive MATLAB/Simulink simulations show how well the controller 
performs in a variety of difficult situations, such as setpoint changes, inflow disruptions, and parameter fluctuations.  The 
proposed controller has some added advantage over PID control exhibited in improvement in Settling Time, decrease in 
Overshoot , and good disturbance rejection. It also has almost zero steady state error. All these advantageous favours it 
for real world industrial applications where accuracy matters.
Keywords: Coupled-Tank System, Adaptive Control, Neural Networks, Level Control, Lyapunov Stability, Disturbance 
Rejection. 
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In t r o d u c t i o n
In any industry like Electricity generation, water treatment, 
pharmaceutical company , petroleum industry the liquid level 
control is most import parameter and its has related issues 
which we can’t ignore [16]. As the complexity if the system 
increases the interaction between different parameters also 
gets increases which make it more problematic for level 
control [2].  

The system posed in this work has a practical applicability 
which has also been validated through MATLAB Simulink.

Control challenges in Coupled-tank are quite wide as the 
complex configuration of this system. Most common is the 
processes which involves low level operation as there is non 
linear relation between the water level and output flowrate 
based on Torricelli’s law [14].  

The traditional controllers can effectively manage the 
behaviour of linear systems, but as the case put forward here 
has extreme non linearity reasoning asymmetric behaviour 
posed by the parameters involved. Let the case of the valve 
connecting both the tank in interacting type is completely 
asymmetric [3]. Additionally, these difficulties becomes 
more prominent in real time application as there may be 
imperfections in sensors , volve pening and closing and 
ambient effect in industries [12].

The most popularly used controller can not handle these 
complexity to much extent , however PID controllers still the 
most usable controller in the industry . The easy to implement 
and easily controllable is the prime reason of its widespread 
acceptability, however fixed gain parameters deployed 
in PID causes poor performance in some of the operating 
conditions [1]. The gain-scheduled PID [9] and Fuzzy Logic 
techniques [15] have shown some better performance 
although one demerit associated to it the parameters have 
to be adjusted manually only and not necessarily ensures 
stability. The model based controller has relatively edge over 
parameter variation . these models are generally based on 
Linear quadratic Gaussian control but the issue is that due 
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to complex implantation strategy modelling mistake likely 
to affect the stable operation

An important development in managing system 
uncertainties and time-varying factors was the introduction 
of adaptive control algorithms [13].  However, unmodeled 
dynamics and large nonlinearities frequently cause problems 
for traditional model reference adaptive controllers.  
Because of its model-free learning features and universal 
approximation capabilities, neural network-based control 
techniques have attracted a lot of attention [10].  Neural 
networks are especially appealing for applications where 
precise system identification is difficult or expensive because 
of their capacity to learn intricate nonlinear mappings 
without explicit system modelling [5].

The main contribution of this study is the creation of an 
advanced adaptive neural network controller that combines 
the potent approximation skills of neural networks with 
the dependable tracking performance of PI control.  A 
radial basis function network structure that offers effective 
nonlinear compensation, a Lyapunov-based adaptation 
law that ensures stability while ensuring effective learning, 
and a comprehensive framework that requires little system 
knowledge while delivering robust performance across a 
range of operating conditions are some of the key innovations 
in our approach.

The structure of this document is as follows:  A thorough 
analysis of pertinent literature is given in Section II.  Section 
III show the mathematical modelling of the system proposed. 
The controller designed and  The modelling and analysis of 
the coupled-tank system are  stability analysis has been given 
in  section IV. Performance analysis and simulation findings 
are discussed in Section V.  Then there is Conclusion section 
VI which concludes the findings of this paper . There is still 
some scope left to carry forward this work, the key future 
problems has been put forward in section VII.

Li t e r at u r e Re v i e w
Over the period of time, a great efforts have been done 
to control the water level in industry, by using different 
controller from simple to the advanced regulatory control. 
The early work establishes the fundamental application of PID 
Controller [1]. But it has problem over multivariable control 
and nonlinearity issues. 

Gain scheduling comes into existence to deal with 
nonlinearities constraint offered by the PID. For the interacting 
type capacity or tank system , the  level has been controlled 
by this gain scheduling method by Khanduja et. al [9]. Which 
shows better performance but has disadvantages as it 
requires  much more experimental data. Similarly Chen et. al 
[4] demonstrated an advanced gain scheduling method for 
conical tank systems which has employed tough adaptation 
law and thoroughly demonstrated the computational 
difficulty in industrial real-time implementation. It still 
exhibits good performance.

The controlling of interacting capacity is all together 

a different and tedious concept as it shows nonlinear 
behaviour.  Patel and Joshi (2019) [15] uses fuzzy logic 
control to showcase better controlling of nolinear system 
than that of conventional one in Liquid level control. But 
the barrier associated with Fuzzy level control is its complex 
implementation, which need expertise acquaintance to 
controller implementation. Smith et. al (2019) [18] developed 
a linear quadratic Gaussian (LQG) controller for coupled 
tank systems, which has good performance under nominal 
conditions for parameter variations, but it needs efficient 
model implementation. 

Narendra et. al (1989) [13] has given a better approach to 
deal with uncertainty in the system by introducing adaptive 
control techniques which further laid down the concept 
of Model based adaptive control under strict and varying 
conditions. Still the performance degrades in non-linear 
systems, but still hold the upper edge over dealing with 
unknown parameters.  Ioannou et. al (2012)  [7] has  expanded 
these ideas further and devised  robust adaptive control, by 
better management of model framework. 

Neural network become easy to go with choice as it 
shows effectiveness in approximation [6]. Lewis et. al (1999) 
[10] established crucial stability guarantees by designing 
neural network through Lyapunov-based designs in complex 
problems especially in robotics and mechanical systems.  
Further Ge et. al [5] created thorough frameworks for future 
error approximation by still maintaining the stability of the 
system by advanced Adaptive Neural Network control. It 
effectively guarantee the effective setpoint tracking.  

The above literature has shown the thorough discussion 
for level control problem but Seborg et. al (2004) has given 
various controlling technique which are usually practical for 
interacting capacities [16].  Bequette et. al (2003)  has posed 
mandatory point to be followed for Process industry for set 
point tracking in different constraints [3]. Although their 
methods have taken linear systems for study, Skogestad 
(2007) et. al [17] has provided controller tuning techniques 
to vary the controller parameters as per need. 

In recent study a number of hybrid and intelligent control 
technique have come into existence. Liu et. al (2018) has 
taken Sliding mode control which shows strong robustness 
[11]. Wang et. al (2019) investigated the predictive control for 
real-time applications [19]. Johnson and Moradi (2018) offered 
comparative analyses of different control strategies, which 
establishes the standard for stability [8].

After all these literature survey still some crucial issues are 
still not being touched. All available controller till date has 
manual interventions and lacking stability, while some still 
could not able to track set point. Some control techniques 
are  still not practically implementable . 

As per the discussion above to overcome the difficulty 
can be done by an adaptive based neural network has to be 
devised in such a way that features the capability of dealing 
nonlinear systems, which comes with faster settling time, 
lower overshoot and better decay ratio, should be robust 
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in behaviour while maintain the stability of the system. This 
method should be capable to deal with real-time application 
and perfectly deals with parameter variation over wide range.  

Co u p l e d-Ta n k Sys t e m Mo d e lli   n g

System Description of Coupled Tank
The problem taken in this study is shown in Fig.1 which is 
coupled tank. The problem of this type can be seen as Multi-
capacity system which is made up of two capacities coupled 
together. This is also a interacting capacity which means 
level variation in one tank depends on the other also which 
make the level control problem more stringent quantity to  
parameter variation .

Maintaining correct water levels in both tanks in spite 
of external disturbances, parameter uncertainties, and the 
system’s intrinsic nonlinearities is the major control goal.  
Every tank has level sensors that detect the water’s height 
continuously, and computer-controlled pumps adjust the 
inflow rates according to the results of the control algorithm.  
The degree of interaction between the tanks can be changed 
by adjusting the coupling valve, which makes it possible to 
examine various coupling scenarios and how they affect 
control performance.

Mathematical Modelling
To study the dynamics of Coupled-Tank System the principle 
of Mass balance equation will apply. For Tank Shown in Fig. 
1 the rate of change of water volume will have following 
equation which implies on the bases of total difference 
between rate of mass inflow to the rate of mass outflow : 

Where V1= Ah1 is water volume in Tank 1, in which A 
represents area of the cross section and h is water level. Qin1 
is the inflow rate and Qout1 is the outflow rate of Tank1, Qcoup 

is the coupling flow rate between the two tanks. 
The rate of outflow is based on Torricell’s law, which 
gives the nonlinear relation between water level and ve-
locity of outflow.  

Where Cd1 and Cd2 are discharge coefficients to estimate 
energy loses, outlet orifice areas are a1 and a2 and  here is the 
acceleration due to gravity.

The coupling flow depends on the difference in level of 
both the tank as it is the case of interacting capacities.

 Where ac is the coupled valve area and  Cc is the coupling 
coefficient. 

From equations (1) and (4) gives the following equation 
which perfectly depicts the nonlinear dynamic model of the 
system behaviour .

     (5)

    (6)

Control Challenges
Several difficult traits of the coupled-tank system make 
control design and execution extremely difficult:

Nonlinear Outflow Characteristics
At low water levels, where little level changes result in 
comparatively large flow variations, the square root 
dependency in equations (2) and (3) creates significant 
nonlinearity.

Strong Coupling Effects
Independent single-input, single-output control methods 
are essentially useless due to the substantial interaction 
between tank levels caused by the interconnection term in 
equation (4).

Actuator Constraints
The controller used must be realistic in tackling the target 
within the constrains imposed which a real time system could 
have like finite reaction time , pump saturation, lag in valve 
operation and measurement of noise. 

Fig. 1: Schematic diagram of coupled Tank
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Parameter Uncertainties
Due to wear, fouling, temperature fluctuations, and other 
operational parameters that are challenging to precisely 
define, practical systems display time-varying discharge 
coefficients.

Asymmetric Dynamics
The controller should be good enough to maintain the 
dynamic behaviour through out the process like asymmetric 
between input flow to gravity driven flow and sudden load 
variation. 

The nonlinear relationship between water level and 
outflow rate is shown in Fig. 2, emphasizing the control issues 
brought about by the square root dependence.  Adaptive 
control solutions are required for consistent performance 
throughout the operating range since the fluctuating slope 
shows that the system gain varies dramatically with operating 
level.

Co n t r o ll  e r De s i g n

Adaptive Neural Network Control Architecture
The suggested control architecture is an advanced 
combination of contemporary computational intelligence 
methods and traditional control concepts.  To effectively 
address system nonlinearities and uncertainties while 
maintaining dependable performance, the control system, 
as shown in Fig. 3, combines a traditional PI controller with 
a neural network-based compensator.
The overall control signal is on the basis of two controllers 
decision as shown below, one of the two is uNN(t) denotes 
the neural network compensation parameter for tackling 

nonlinearities and uncertainties and the other is to control 
baseline tracking performance using Proportional Integral 
control represented by uPI(t). The relation is shown is as 
below :

   	 (7)

The PI controller ensures the setpoint tracking . The 
generalized formula is as below:-	  

   	 (8)

Where e(t) is the difference of reference level href(t) and 
actual level h(t). Kp and Ki is the proportional and integral 
gain respectively.

Compensator Design using Neural Network
For nonlinear correction, a single-hidden-layer neural 
network with radial basis function (RBF) activation is used.  
This architecture’s straightforward design and superior 
approximation skills make it especially well-suited for real-
time control applications:

   	 (9)

Where W=[w1,w2,…….wN]T gives the information 
regarding output layer weight factor and hidden  layer 
activation functions represented by

The Gausian radial basis functions are as follows

   	 (10)
Where,  is the input vector, ci are the center vectors that 
determine the locations of the receptive fields, σi are the 
width parameters that regulate the function spread, and N 
is the number of hidden neurons.

Fig.2 : Relation between water level and outflow rate of 
valve openings 

Fig. 3 : Block diagram of proposed Adaptive Neural 
Network



Adaptive Neural Network based control to counter disturbances for Coupled-Tank Water Level control

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 4 (2022)198

Adaptation Law and Stability Analysis
Lyapunov stability theory is used to create the weight 
adaption mechanism, which ensures both effective learning 
and closed-loop stability.  Examine the following proposed 
Lyapunov function that takes tracking error and parameter 
estimate error into account:

     (11)
Where, gives the weight estimation error, gives the ideal 
weight factor which implies the perfect compensation, and  
is a +ve definite adaptation gain matrix which determines 
and control the learning rate. 

The time derivative of the Lyapunov function along the 
system trajectories is :

It is necessary to ensure   which implies the stability, so 
the carefully designed adaptation law is as follows :-

Where k>0 is leakage term that prevents weight drift 
and ensures boundness of all parameters, by imparting 
robustness against probable disturbances and errors.

Theorem 1
Using the adaptive neural network controller specified by 
equations (7) through (13), consider the coupled-tank system 
represented by equations (5) and (6).  The tracking error in the 
resulting closed-loop system converges exponentially to a 
compact set around zero, whose size may be made arbitrarily 
tiny by choosing the right parameters, and all signals are 
uniformly finally bounded.

Proof
When the adaptation law (13) is substituted into (12) 
and the system dynamics and standard neural network 
approximation properties are used, the following results 
are obtained:

    (14)

Where λ >0 gives the minimum convergence rate and   is 
positive constant which approximates the errors. This 
inequality ensures the bounded output of all signals and 
completes the proof. 

Re s u lts An d Di s c u s s i o n

Simulation Setup
The proposed control system has been modelled and 
simulated through MATLAB/ Simulink R2019a in which the 

carefully chosen parameters (noise measurement, parameter 
variations and estimation etc. ) required for this study has 
been chosen . The carefully chosen parameters for this 
simulation purpose has been shown in Table 1.

The neural network architecture devised here uses15 
hidden neurons with width parameters set to σi = 0.5 
and centers in such a way that it is uniformly distributed 
throughout the anticipated working range to make sure there 
is enough overlap and smoothness.  To achieve balanced 
learning across all weights, the adaptation gains are chosen 
as Γ = diag([10, 10,..., 10]),  and the leakage coefficient is 
chosen as K = 0.01 to provide robustness without being 
overly conservative.

Performance under Setpoint Variation
The system response to a large setpoint variation i.e. 

taking range from 0.2 m to 0.4 m is shown in Fig. 4, which 
amply describes the enhanced effectiveness of the adaptive 
neural network controller purposed.  While the fuzzy and 
MRAC controllers exhibits better but still have performing 
under constrained, the traditional PID controller shows 
delayed settling time and have significant overshoot.  As 
seen in the figure smaller overshoots and quick convergence 
our purposed controller has better response hence proves 
its merit.

The outcome of Fig. 4 has been summarized in Table 
II which clearly shows how much better our purposed 
controller is performing. This 

adaptive neural network method, improves the settling 
time by 63% compared than that of regular PID control. The 
other aspect visible in this Table II is that the overshoot come 
down by 76% and it also shows the improvement in the 

Table I : System Parameters for Simulation

Parameters Value Unit Description

Tank Diameter 0.14 m Circular Tank 
diameter

Tank Cross-sectional 
area (A) 0.0154 m2 Area of the 

tanks

Maximum water 
level

0.6 m2 Operational 
Limit

Sampling Time 0.1 s Discrete 
Implementation 

Pump maximum 
flow rate

0.1 L/s Actuator 
constraints

Outlet area (a1,a2) 5x10-5 m2 Orifice Size

Discharge 
Coefficient (Cd1,Cd2)

0.8 - Outflow 
characteristics 

Coupling valve are 
(ac)

3x10-5 m2 Coupling Flow 
rate

Coupling Coefficient 
(Cc)

0.7 - Interaction  
Strength
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integral absolute error (IAE) which is by 74%. Most important 
parameter is its set point tracking as the steady-state error is 
almost equivalent to zero

Disturbance Rejection
A crucial performance indicator for realistic control systems 
is the disturbance rejection capability.  The system is put 
through a difficult 25% inflow rate reduction at t=30 s while 
keeping the level setpoint at 0.4 m, as illustrated in Fig. 5.  

With little level deviation and quick recovery to the 
intended setpoint, the suggested controller exhibits 
remarkable disturbance rejection capabilities.

The significant benefits of the suggested strategy are 
demonstrated by the quantitative disturbance rejection 
metrics shown in Table III.  When compared to traditional 
PID control, the adaptive neural network controller provides 

65% faster recovery and a 60% reduction in the maximum 
level deviation.  Significantly improved overall disturbance 
handling capability is indicated by a 71% reduction in the 
integrated absolute error during the disturbance period.

Robustness Analysis under Parameter 
Variations
Another essential prerequisite for useful control systems 
is robustness to parameter fluctuations.  The controller 
performance under difficult ±30% fluctuations in important 
system parameters, such as discharge coefficients and tank 
size, is shown in Fig. 6. 

As depicted in above figure the controller shows the 
robustness over parameter variations and preforms quite 
well. The visible advantage shown in robustness analysis. 

Adaptation Efficacy
The learning capacity

Fig. 4: Performance of different controller as setpoint 
variation from 0.2m to 0.4m in water level.  

TABLE : 2. Performance comparison of controller under 
Setpoint variation

Controller Settling 
Time (s)

Overshoot
(%)

IAE Steady-state 
Error

MRAC 32.1 7.2 5.1 0.4

PID 45.2 12.8 8.9 0.8

FUZZY 38.7 9.3 6.4 0.6

Proposed 
ANN

16.8 3.1 2.3 0.1

Fig. 5: Performance of different controller on the basis of 
disturbance rejection.

TABLE : 3. Performance comparison of controller under 
disturbance rejection

Controller Recovery Time 
(s)

Max. 
deviation 
(m)

IAE during 
disturbance

MRAC 18.7 18.7 0.31

PID 28.5 0.020 0.42

FUZZY 22.3 0.015 0.31

Proposed 
ANN

9.8 0.008 0.12
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to neural network compensator successfully estimates 
the future error and compensates the effect of parameter 
variations.

Practically Viable
This controller can be applied to real-life problems as it has 
precise parameter knowledge as the situation varies , which 
make it practically useful and deployable at any situation.

Performance Conservancy
Despite parameters variations and external disturbance 
the system does well in all condition, by not disturbing the 
stability of the system. So this controller keeps assure the 
performance of system.  

Co n c lu s i o n 
This paper perfectly implemented the Advanced neural 
network framework on multi-capacity system of interacting 
type of second order. The proposed system is having faster 
settling time by 63% , 74% better disturbances and 76% 
reduced overshoot. The Lyapunov-based adaption law has 
better control over parameter variation in the range of -30% 
to 30%. The comparison Table I & II establishes the versatility 
of proposed controller.

Fu t u r e Sco p e
The future work can be carried out by using two more 

interacting capacities which makes the level control even 
more difficult parameter to control. For the controller point 
of view the performance of Model predictive control, sliding 
mode control can also be checked. In this study only level 
control has been studied, this study can be put forward 
for temperature and pressure control which varies on the 
disturbance rejection. 
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