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ABSTRACT

This paper addresses the tough issues pertaining to water level control issues in coupled-tank systems, which might be
prevalent specifically to Process industries but has also seen widespread nonlinearities in its behaviour being sensitivity
to disturbances of any kind. Here we posed a novel Adaptive Neural Network control-based strategy which excellently
compensates parameter uncertainties, for machine nonlinearities, and influx disturbances. This control architecture
perfectly combines a conventional Proportional-Integral (Pl) controller with a single hidden-layer neural network offering
online weight adaptation. Here to approximate and cancel unknown nonlinearities Neural Network based compensator
accompany radial basis capabilities has been employed, while the adaption law has been devised Lyapunov Stability
theory to insure stability of all closed-loop processes. Extensive MATLAB/Simulink simulations show how well the controller
performs in a variety of difficult situations, such as setpoint changes, inflow disruptions, and parameter fluctuations. The
proposed controller has some added advantage over PID control exhibited in improvement in Settling Time, decrease in
Overshoot , and good disturbance rejection. It also has almost zero steady state error. All these advantageous favours it
for real world industrial applications where accuracy matters.
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INTRODUCTION

In any industry like Electricity generation, water treatment,
pharmaceutical company, petroleum industry the liquid level
control is most import parameter and its has related issues
which we can't ignore [16]. As the complexity if the system
increases the interaction between different parameters also
gets increases which make it more problematic for level
control [2].

The system posed in this work has a practical applicability
which has also been validated through MATLAB Simulink.

Control challenges in Coupled-tank are quite wide as the
complex configuration of this system. Most common is the
processes which involves low level operation as there is non
linear relation between the water level and output flowrate
based on Torricelli's law [14].

The traditional controllers can effectively manage the
behaviour of linear systems, but as the case put forward here
has extreme non linearity reasoning asymmetric behaviour
posed by the parameters involved. Let the case of the valve
connecting both the tank in interacting type is completely
asymmetric [3]. Additionally, these difficulties becomes
more prominent in real time application as there may be
imperfections in sensors , volve pening and closing and
ambient effect in industries [12].
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The most popularly used controller can not handle these
complexity to much extent, however PID controllers still the
most usable controller in the industry . The easy toimplement
and easily controllable is the prime reason of its widespread
acceptability, however fixed gain parameters deployed
in PID causes poor performance in some of the operating
conditions [1]. The gain-scheduled PID [9] and Fuzzy Logic
techniques [15] have shown some better performance
although one demerit associated to it the parameters have
to be adjusted manually only and not necessarily ensures
stability. The model based controller has relatively edge over
parameter variation . these models are generally based on
Linear quadratic Gaussian control but the issue is that due
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to complex implantation strategy modelling mistake likely
to affect the stable operation

An important development in managing system
uncertainties and time-varying factors was the introduction
of adaptive control algorithms [13]. However, unmodeled
dynamics and large nonlinearities frequently cause problems
for traditional model reference adaptive controllers.
Because of its model-free learning features and universal
approximation capabilities, neural network-based control
techniques have attracted a lot of attention [10]. Neural
networks are especially appealing for applications where
precise system identification is difficult or expensive because
of their capacity to learn intricate nonlinear mappings
without explicit system modelling [5].

The main contribution of this study is the creation of an
advanced adaptive neural network controller that combines
the potent approximation skills of neural networks with
the dependable tracking performance of Pl control. A
radial basis function network structure that offers effective
nonlinear compensation, a Lyapunov-based adaptation
law that ensures stability while ensuring effective learning,
and a comprehensive framework that requires little system
knowledge while delivering robust performance across a
range of operating conditions are some of the key innovations
in our approach.

The structure of this document is as follows: A thorough
analysis of pertinent literature is given in Section Il. Section
Il show the mathematical modelling of the system proposed.
The controller designed and The modelling and analysis of
the coupled-tank system are stability analysis has been given
in section IV. Performance analysis and simulation findings
are discussed in Section V. Then there is Conclusion section
VI which concludes the findings of this paper . There is still
some scope left to carry forward this work, the key future
problems has been put forward in section VII.

LiTERATURE REVIEW

Over the period of time, a great efforts have been done
to control the water level in industry, by using different
controller from simple to the advanced regulatory control.
The early work establishes the fundamental application of PID
Controller [1]. But it has problem over multivariable control
and nonlinearity issues.

Gain scheduling comes into existence to deal with
nonlinearities constraint offered by the PID. For the interacting
type capacity or tank system, the level has been controlled
by this gain scheduling method by Khanduja et. al [9]. Which
shows better performance but has disadvantages as it
requires much more experimental data. Similarly Chen et. al
[4] demonstrated an advanced gain scheduling method for
conical tank systems which has employed tough adaptation
law and thoroughly demonstrated the computational
difficulty in industrial real-time implementation. It still
exhibits good performance.

The controlling of interacting capacity is all together
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a different and tedious concept as it shows nonlinear
behaviour. Patel and Joshi (2019) [15] uses fuzzy logic
control to showcase better controlling of nolinear system
than that of conventional one in Liquid level control. But
the barrier associated with Fuzzy level control is its complex
implementation, which need expertise acquaintance to
controllerimplementation. Smith et. al (2019) [18] developed
a linear quadratic Gaussian (LQG) controller for coupled
tank systems, which has good performance under nominal
conditions for parameter variations, but it needs efficient
model implementation.

Narendra et. al (1989) [13] has given a better approach to
deal with uncertainty in the system by introducing adaptive
control techniques which further laid down the concept
of Model based adaptive control under strict and varying
conditions. Still the performance degrades in non-linear
systems, but still hold the upper edge over dealing with
unknown parameters. loannou et. al (2012) [7] has expanded
these ideas further and devised robust adaptive control, by
better management of model framework.

Neural network become easy to go with choice as it
shows effectiveness in approximation [6]. Lewis et. al (1999)
[10] established crucial stability guarantees by designing
neural network through Lyapunov-based designs in complex
problems especially in robotics and mechanical systems.
Further Ge et. al [5] created thorough frameworks for future
error approximation by still maintaining the stability of the
system by advanced Adaptive Neural Network control. It
effectively guarantee the effective setpoint tracking.

The above literature has shown the thorough discussion
for level control problem but Seborg et. al (2004) has given
various controlling technique which are usually practical for
interacting capacities [16]. Bequette et. al (2003) has posed
mandatory point to be followed for Process industry for set
point tracking in different constraints [3]. Although their
methods have taken linear systems for study, Skogestad
(2007) et. al [17] has provided controller tuning techniques
to vary the controller parameters as per need.

In recent study a number of hybrid and intelligent control
technique have come into existence. Liu et. al (2018) has
taken Sliding mode control which shows strong robustness
[11]. Wang et. al (2019) investigated the predictive control for
real-time applications [19]. Johnson and Moradi (2018) offered
comparative analyses of different control strategies, which
establishes the standard for stability [8].

After all these literature survey still some crucial issues are
still not being touched. All available controller till date has
manual interventions and lacking stability, while some still
could not able to track set point. Some control techniques
are still not practically implementable .

As per the discussion above to overcome the difficulty
can be done by an adaptive based neural network has to be
devised in such a way that features the capability of dealing
nonlinear systems, which comes with faster settling time,
lower overshoot and better decay ratio, should be robust
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in behaviour while maintain the stability of the system. This
method should be capable to deal with real-time application
and perfectly deals with parameter variation over wide range.

CouPLED-TANK SYSTEM MODELLING

System Description of Coupled Tank

The problem taken in this study is shown in Fig.1 which is
coupled tank. The problem of this type can be seen as Multi-
capacity system which is made up of two capacities coupled
together. This is also a interacting capacity which means
level variation in one tank depends on the other also which
make the level control problem more stringent quantity to
parameter variation .

Maintaining correct water levels in both tanks in spite
of external disturbances, parameter uncertainties, and the
system’s intrinsic nonlinearities is the major control goal.
Every tank has level sensors that detect the water’s height
continuously, and computer-controlled pumps adjust the
inflow rates according to the results of the control algorithm.
The degree of interaction between the tanks can be changed
by adjusting the coupling valve, which makes it possible to
examine various coupling scenarios and how they affect
control performance.

Mathematical Modelling

To study the dynamics of Coupled-Tank System the principle
of Mass balance equation will apply. For Tank Shown in Fig.
1 the rate of change of water volume will have following
equation which implies on the bases of total difference
between rate of mass inflow to the rate of mass outflow :

av,

— = Qin1 — Qout1 — Qcoup (1)

dt

Where V,= Ah, is water volume in Tank 1, in which A
represents area of the cross section and h is water level. Q;

is the inflow rate and Q,; is the outflow rate of Tank1, Q .,

Tank 1 Tank 2

Qr’rll(?j

[T

Qina(t)

Coupling Valve

ha(t)

Ry(t)

5 5

Qrmt](?j Qnuzi(?j

Fig. 1: Schematic diagram of coupled Tank
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is the coupling flow rate between the two tanks.

The rate of outflow is based on Torricell’s law, which
gives the nonlinear relation between water level and ve-
locity of outflow.

Qout1 = Caray 2/ 2ghy 2)
Qoutz = Cazaz/2gh; (3)

Where Cy, and Cy, are discharge coefficients to estimate
energy loses, outlet orifice areas are a, and a, and hereis the
acceleration due to gravity.

The coupling flow depends on the difference in level of
both the tank as it is the case of interacting capacities.

Qcoup = Ceacsign(hy — hz)\/ 2glhy — hy| (4)

Where a_is the coupled valve areaand C_is the coupling
coefficient.

From equations (1) and (4) gives the following equation
which perfectly depicts the nonlinear dynamic model of the
system behaviour .

dh 1
d—tl =7 (Qim — Cq10ac+/29hy —
CCG,C 4/ Zglhl - hzl)
(5)
dh
d—tz = %(Qinz — Cqz20c+/2g9hy —
CCaC 2/ 2g|h1 - hzl)
(6)

Control Challenges

Several difficult traits of the coupled-tank system make
control design and execution extremely difficult:

Nonlinear Outflow Characteristics

At low water levels, where little level changes result in
comparatively large flow variations, the square root
dependency in equations (2) and (3) creates significant
nonlinearity.

Strong Coupling Effects

Independent single-input, single-output control methods
are essentially useless due to the substantial interaction
between tank levels caused by the interconnection term in
equation (4).

Actuator Constraints

The controller used must be realistic in tackling the target
within the constrains imposed which a real time system could
have like finite reaction time , pump saturation, lag in valve
operation and measurement of noise.
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1072 Nonlinear Outflow Characteristics
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Fig.2 : Relation between water level and outflow rate of
valve openings

Parameter Uncertainties

Due to wear, fouling, temperature fluctuations, and other
operational parameters that are challenging to precisely
define, practical systems display time-varying discharge
coefficients.

Asymmetric Dynamics

The controller should be good enough to maintain the
dynamic behaviour through out the process like asymmetric
between input flow to gravity driven flow and sudden load
variation.

The nonlinear relationship between water level and
outflow rate is shown in Fig. 2, emphasizing the control issues
brought about by the square root dependence. Adaptive
control solutions are required for consistent performance
throughout the operating range since the fluctuating slope
shows that the system gain varies dramatically with operating
level.

CONTROLLER DESIGN

Adaptive Neural Network Control Architecture

The suggested control architecture is an advanced
combination of contemporary computational intelligence
methods and traditional control concepts. To effectively
address system nonlinearities and uncertainties while
maintaining dependable performance, the control system,
as shown in Fig. 3, combines a traditional Pl controller with
a neural network-based compensator.

The overall control signal is on the basis of two controllers
decision as shown below, one of the two is uy,(t) denotes
the neural network compensation parameter for tackling
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Fig. 3 : Block diagram of proposed Adaptive Neural
Network

nonlinearities and uncertainties and the other is to control
baseline tracking performance using Proportional Integral
control represented by up(t). The relation is shown is as
below :

u(t) = up(t) + uyy(t) )

The Pl controller ensures the setpoint tracking . The
generalized formula is as below:-

t

up;(t) = er(t) + K; fo e(t)dr )

Where e(t) is the difference of reference level h,(t) and

actual level h(t). Kp and K; is the proportional and integral
gain respectively.

Compensator Design using Neural Network

For nonlinear correction, a single-hidden-layer neural
network with radial basis function (RBF) activation is used.
This architecture’s straightforward design and superior
approximation skills make it especially well-suited for real-
time control applications:

uyn () = B wi; (x(@)) = W p(x(1))

Where W=[w,,w,,....... WN]T gives the information
regarding output layer weight factor and hidden layer
activation functions represented by

The Gausian radial basis functions are as follows

@;(x) = exp (—”X;—C;”z) =1,2,....... N
% (10)
Where, is the input vector, ci are the center vectors that
determine the locations of the receptive fields, oi are the
width parameters that regulate the function spread, and N

is the number of hidden neurons.
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Adaptation Law and Stability Analysis

Lyapunov stability theory is used to create the weight
adaption mechanism, which ensures both effective learning
and closed-loop stability. Examine the following proposed
Lyapunov function that takes tracking error and parameter
estimate error into account:

V(t) = =e2(t) + =wT (T Lw(t)
Where, gives the weight estimation error, gives the ideal
weight factor which implies the perfect compensation, and
is a +ve definite adaptation gain matrix which determines
and control the learning rate.

The time derivative of the Lyapunov function along the
system trajectoriesis :

V() =e(®)e(t)+wIT-1wT(t) (12)
It is necessary to ensure which implies the stability, so
the carefully designed adaptation law is as follows :-
Where k>0 is leakage term that prevents weight drift
and ensures boundness of all parameters, by imparting
robustness against probable disturbances and errors.

w(t) = —To(x(t))e(®) — kT|lw(®)]|  (13)

Theorem 1

Using the adaptive neural network controller specified by
equations (7) through (13), consider the coupled-tank system
represented by equations (5) and (6). The tracking error in the
resulting closed-loop system converges exponentially to a
compact set around zero, whose size may be made arbitrarily
tiny by choosing the right parameters, and all signals are
uniformly finally bounded.

Proof

When the adaptation law (13) is substituted into (12)
and the system dynamics and standard neural network
approximation properties are used, the following results
are obtained:

V() < —2e2(0) — k|1 (O||" + € (14)

Where A >0 gives the minimum convergence rate and is
positive constant which approximates the errors. This
inequality ensures the bounded output of all signals and
completes the proof.

ResuLts AnD DiscussionN
Simulation Setup

The proposed control system has been modelled and
simulated through MATLAB/ Simulink R2019a in which the
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carefully chosen parameters (noise measurement, parameter
variations and estimation etc. ) required for this study has
been chosen . The carefully chosen parameters for this
simulation purpose has been shown in Table 1.

The neural network architecture devised here uses15
hidden neurons with width parameters set to o; = 0.5
and centers in such a way that it is uniformly distributed
throughout the anticipated working range to make sure there
is enough overlap and smoothness. To achieve balanced
learning across all weights, the adaptation gains are chosen
as [ = diag([10, 10,..., 10]), and the leakage coefficient is
chosen as K = 0.01 to provide robustness without being
overly conservative.

Performance under Setpoint Variation

The system response to a large setpoint variation i.e.
taking range from 0.2 m to 0.4 m is shown in Fig. 4, which
amply describes the enhanced effectiveness of the adaptive
neural network controller purposed. While the fuzzy and
MRAC controllers exhibits better but still have performing
under constrained, the traditional PID controller shows
delayed settling time and have significant overshoot. As
seen in the figure smaller overshoots and quick convergence
our purposed controller has better response hence proves
its merit.

The outcome of Fig. 4 has been summarized in Table
Il which clearly shows how much better our purposed
controller is performing. This

adaptive neural network method, improves the settling
time by 63% compared than that of regular PID control. The
otheraspect visible in this Table Il is that the overshoot come
down by 76% and it also shows the improvement in the

Table | : System Parameters for Simulation

Parameters Value Unit  Description
Tank Diameter Circular Tank
0.14 m .

diameter
Tank Cross-sectional 00154 m? Area of the
area (A) tanks
Maximum water 0.6 m?  Operational
level Limit
Sampling Time 0.1 s Discrete

Implementation
Pump maximum 0.1 L/s  Actuator
flow rate constraints
Outletarea (al,a2)  5x10° m?  Orifice Size
Discharge 0.8 - Outflow

Coefficient (Cd1,Cd2) characteristics

Couplingvalveare ~ 3x10° m?  Coupling Flow
(ac) rate

Coupling Coefficient 0.7 - Interaction
(Cao) Strength
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System Response to Setpoint Change

0.1 | | | |
0 20 40 60 80 100
Time (s)
----Reference — PID -=---Fuzzy
--------- MRAC -----Proposed ANN

Fig. 4: Performance of different controller as setpoint
variation from 0.2m to 0.4m in water level.

integral absolute error (IAE) which is by 74%. Most important
parameter is its set point tracking as the steady-state error is
almost equivalent to zero

Disturbance Rejection

A crucial performance indicator for realistic control systems
is the disturbance rejection capability. The system is put
through a difficult 25% inflow rate reduction at t=30 s while
keeping the level setpoint at 0.4 m, as illustrated in Fig. 5.

With little level deviation and quick recovery to the
intended setpoint, the suggested controller exhibits
remarkable disturbance rejection capabilities.

The significant benefits of the suggested strategy are
demonstrated by the quantitative disturbance rejection
metrics shown in Table lll. When compared to traditional
PID control, the adaptive neural network controller provides

TABLE : 2. Performance comparison of controller under
Setpoint variation

Disturbance Rejection Performance

Disturbande ' '
0.44 |- -
g
T 042 -
()
-
3
o
= 0.4
| |
0'380 20 80 100
Time (s)
----Reference PID -=---Fuzzy
--------- MRAC -----Proposed ANN

Fig. 5: Performance of different controller on the basis of
disturbance rejection.

65% faster recovery and a 60% reduction in the maximum
level deviation. Significantly improved overall disturbance
handling capability is indicated by a 71% reduction in the
integrated absolute error during the disturbance period.

Robustness Analysis under Parameter
Variations

Another essential prerequisite for useful control systems
is robustness to parameter fluctuations. The controller
performance under difficult £30% fluctuations in important
system parameters, such as discharge coefficients and tank
size, is shown in Fig. 6.

As depicted in above figure the controller shows the
robustness over parameter variations and preforms quite
well. The visible advantage shown in robustness analysis.

Adaptation Efficacy

The learning capacity

TABLE : 3. Performance comparison of controller under
disturbance rejection

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 4 (2022)

Controller  Settling Overshoot IAE Steady-state
Time (s) (%) Error

MRAC 32.1 7.2 51 04

PID 45.2 12.8 89 08

FUzzy 38.7 9.3 64 06
Proposed  16.8 3.1 23 0.1

ANN

SVIS

Controller  Recovery Time Max. IAE during
(s) deviation disturbance
(m)

MRAC 18.7 18.7 0.31

PID 285 0.020 0.42

FUuzzy 223 0.015 0.31
Proposed 9.8 0.008 0.12

ANN
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Robustness Under Parameter Variations

0.44

0.42

Water Level (m)

0.38 | | | |

0 20 40 60 80 100
Time (s)
--—- Reference @——  Nominal
--=-430% Variation - -30% Variation

Fig. 6: Robustness analysis of proposed controller in
comparison to other controller under parameter variation.

to neural network compensator successfully estimates
the future error and compensates the effect of parameter
variations.

Practically Viable

This controller can be applied to real-life problems as it has
precise parameter knowledge as the situation varies, which
make it practically useful and deployable at any situation.

Performance Conservancy

Despite parameters variations and external disturbance
the system does well in all condition, by not disturbing the
stability of the system. So this controller keeps assure the
performance of system.

CONCLUSION

This paper perfectly implemented the Advanced neural
network framework on multi-capacity system of interacting
type of second order. The proposed system is having faster
settling time by 63% , 74% better disturbances and 76%
reduced overshoot. The Lyapunov-based adaption law has
better control over parameter variation in the range of -30%
to 30%. The comparison Table | &Il establishes the versatility
of proposed controller.

FuTure ScoPE
The future work can be carried out by using two more
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interacting capacities which makes the level control even
more difficult parameter to control. For the controller point
of view the performance of Model predictive control, sliding
mode control can also be checked. In this study only level
control has been studied, this study can be put forward
for temperature and pressure control which varies on the
disturbance rejection.
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