
Ab s t r ac t
A higher-order refined mathematical model has been formulated to analyze the stress and deflection of laminated composite 
plates. The displacement functions of the laminated composite satisfy both the upper and lower surfaces of the plate and 
account for the parabolic variation of transverse shear stress across the plate thickness without applying shear correction 
factors. The displacement functions are used to derive the strain-displacement relations and incorporate with the equation 
of motion for simple supported laminated plates based on Hamilton’s principle. The Finite element techniques are used 
through eigenvalue formulation by using Navier’s solution technique The analytical solutions of the present refined plate 
are compared with exact theories. Comparison studies show that the developed refined model achieves accuracy and is 
computationally efficient.
Keywords: laminated composite plate, Mathematical model, higher-order shear deformation theory, von Karman 
hypothesis.
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In t r o d u c t i o n 
The laminated composite materials are widely used in 
automotive, robotics, marine applications, aerospace, 
healthcare instruments, and many other industries because 
of their high strength and stiffness-to-weight ratio and 
material having excellent for the high structural performance 
of unidirectional fiber composites. To increase engineering 
applications, different laminated theories have been 
developed so far. As classical laminated plate theory (CLPT) 
proposed by Love [1] and Kirchhoff [2] has an extension of the 
Love–Kirchhoff classical plate theory (CPT). According to CPT, 
the midplane normally remains straight after and before the 
deformation of the plate. Reissner [3] developed an analytical 
solution of CLPT without using rotary inertia and transverse 
shear deformation effects and the results underestimate 
the thin laminate and overestimate the thick laminates. 
Timoshenko [4] has proposed the thin beam theory based 
on the shear deformation and rotatory inertia effects to 
overcome the limitations of CPT. Reissner [5] further extended 
the Timoshenko work based on the thick plate theory and 
the results are closely associated with the Timoshenko beam 
theory. The first-order shear deformation theory of laminated 
plates including transverse shear deformation and rotary 
inertia effect of the plates first proposed by Reissner [6]. A 
detailed overview of different shear deformation theories 
with their applicability is presented by Zhang and Yang [7]. 
Reddy [8] proposed higher-order shear deformation theory 

for symmetric cross-ply composite plates for the cubic 
variations of in-plane and out-off-plane stresses. Whitney 
[9] developed the higher-order shear deformation theory for 
the analysis of cylindrical bending of cross-ply and angle-ply 
laminated anti-symmetric plates with sinusoidal functions 
for both in-plane and out-of-plane displacement. Shimpi [10] 
first developed the two variable refined plate theories for 
isotropic plates and extended the work by Shimpi and Patil 
[11] and Kim and Thai [12] for laminated composite orthotropic 
plates. Guangyu [13] developed the simple third-order shear 
deformation theory based on three principles methods, first, 
the kinematics displacement reduced from the higher-order 
displacement, second, the order of differentiation in terms 
of three generalized displacements of bending plates, and 
third, each edge considered five DOFs of plate boundaries. 
Hirwani et al [14] developed  two higher-order kinematic 
models to calculate the nonlinear bending and stress value of 
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internally damaged composite flat panel layered structures. 
Fallah and Karimi [15] study the nonlinear bending based 
on transverse mechanical loading of functionally graded 
circular sector plates with simply supported radial edges. 
Zine et al [16] discussed the bending and free vibration of 
multilayered plates and shells based on new higher order 
shear deformation theory. Hirwani et al [17] developed  two 
higher-order kinematic models to calculate the nonlinear 
bending and stress value of internally damaged composite 
flat panel layered structures. Fallah and Karimi [18] study the 
nonlinear bending based on transverse mechanical loading 
of functionally graded circular sector plates with simply 
supported radial edges. Reddy [19] proposed the nonlinear 
theory by using finite element analysis of anti-symmetric 
angle ply laminated plates for out-off plate deformation. 

The present research accounts for the deflection and 
stresses of in-plane and out-off-plane analysis of laminated 
plates based on simplified higher order shear deformation 
theory in. Hamilton’s principle is used to derive the equation 
of motion of the plates. The transverse shear stresses 
across the plate thickness are parabolic and satisfy zero 
transverse shear effect at two free surfaces of the plates 
without considering shear correction factors. The closed-
form analytical solutions are obtained through eigenvalue 
formulation by using Navier’s solution technique. Lastly, 
discuss the accuracy of the present theory based on the 3D 
elasticity theory proposed by Reddy [19] and Noor [20]. 

Theoretical formulation.
The displacement field of the HSDT is given by:
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Where, u0, v0, and w0 are the displacement functions of the 
coordinate points (x, y, z) on the reference plane and ϕx and 
ϕy are the mid-plane rotation about horizontal axes. The 
functions ζx, ζy, ψx, and ψy are to be evaluated by using the 
condition that the transverse shear stress at the upper and 
bottom surfaces of the plate is zero.
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For, laminated plates, these approaches are equivalent to the 
corresponding shear strain:
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Substituting equation (2.6) in eqn. (2.1), the displacement 
field becomes:
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The mid-plane rotations are assumed to be similar in the x 
and y directions. Therefore, the expression can be written,  
ϕx =  ̶∂ wb/∂ x and ϕy =  ̶∂ wb/∂ y, 		           

The displacement field of Eqn. (2.7) based on the 
above assumptions can be written:
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Constitutive Equations 
The orthotropic plate consists of ‘n’ lamina layers of x, y, 
and z coordinate axes as shown in Fig.1. The plate laminate 
thickness h and horizontal sides a and b are considered. Each 
lamina in the laminate has a material symmetry with a lamina 
plane parallel to the coordinate plane.
The governing differential equations for a laminate can be 
written:

Fig 1: Lamina arrangement of composite plate
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Where Qij is the material constants in the axes of the lamina. 
The constitutive relations of the kth layer is given:
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Where`Qij def ined laminate constants of materials 
transformation from by [21].

Equilibrium Equations
The equation of motion by Hamilton’s principle is given:

( )
0

0
T

U W K dtδ δ δ= + −∫      (4.1)

Where, δU, δW, and δK are the virtual strain energy, virtual 
work done, and virtual kinetic energy, respectively. 

When the transverse shear effect (ws = 0) has been neglected 
the governing differential equations of composite laminated 
plates behave as a classical plate theory.

Numerical Results
The Navier solutions have been considered for rectangular 
simply supported composite plates. The different boundary 
conditions are assumed to be the closed-form solutions. A 
MATLAB-based FEM code is developed based on the above 
formulation. The accuracy of the present theory is verified 
with the help of various numerical observation.
In all the examples the shear correction factor is considered 
as 5/6 and the material constants are: 
•	 Material 1. E1/E2 = 40, G23/E2 = 0.5, G12/E2 = G13/E2 = 0.6 

and ν = 0.25  [12]
•	 Material 2. E1/E2 = 25, G23/E2 = 0.2, G12/E2 = G13/E2 = 0.5 

and ν = 0.25  [22]
Where, subscripts used 1, 2, and 3 are the x, y, and z axes of 
the laminated plates. 
The non-dimensional properties are used in this article:
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Bending analysis
The deflection and stress bending of laminated composite 

 Table 1. Non-dimensionalized deflections and stresses in 2-ply (0/90)1 square laminate.

a/h Theory    w     xσ
  yσ

   xyσ

2 Pagano,1970  4.9362 -0.9070 1.4480 -0.0964

Reddy,1984 4.5619 -1.4277 1.4277 -0.0719

Present 4.5618 -1.4276 1.4276 -0.0719 

5 Pagano,1970  1.7287 -0.7723 0.8036 -0.0586

Reddy,1984 1.6670 -0.8385 0.8385 -0.0558

Present 1.6671 -0.8383 0.8382 -0.0557 

10 Pagano,1970  1.2318 -0.7317 0.7353 -0.0540

Reddy,1984 1.2161 -0.7468 0.7468 -0.0533

Present 1.2161 -0.7466 0.7466 -0.0532 

20 Pagano,1970  1.1060 -0.7200 0.7206 -0.0529

Reddy,1984 1.1018 -0.7235 0.7235 -0.0527

Present 1.1016 -0.7234 0.7234 -0.0526 

100 Pagano,1970  1.0742 -0.7219 0.7219 -0.0529

Reddy,1984 1.0651 -0.7161 0.7161 -0.0525

Present 1.0652 -0.7158 0.7158 -0.0524 
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Table 2:Non-dimensionalized deflections and stresses in 4-ply (0/90)2 square laminate.

a/h Theory w
xσ yσ xyσ xzσ yzσ

2 Pagano,1970   11.767 1.388 0.835 -0.0863 0.153 0.295

Reddy,1984 5.1286 1.3112 0.5876 -0.0889 - -

Present 5.1285 1.3121 0.5864 -0.0878 0.1434 0.2885

4 Pagano,1970   4.491 0.720 0.663 -0.0467 0.219 0.292

Reddy,1984 1.9218 0.7344 0.5028 -0.0497 - -

Present 1.9203 0.7320 0.5017 -0.0487 0.2073 0.2892

10 Pagano,1970   - 0.559 0.401 -0.0275 0.301 0.196

Reddy,1984 0.7125 0.5684 0.2690 -0.0277 - -

Present 0.7123 0.5678 0.2864 -0.0276 0.3032 0.1897

20 Pagano,1970   - 0.543 0.308 -0.023 0.328 0.156

Reddy,1984 0.5041 0.5460 0.2043 -0.0230 - -

Present 0.5032 0.5452 0.2180 -0.0221 0.3264 0.1652

50 Pagano,1970   - 0.539 0.276 -0.0216 0.337 0.141

Reddy,1984 0.4430 0.5399 0.1836 -0.0216 - -

Present 0.4418 0.5397 0.1886 -0.0214 0.3367 0.1412

100 Pagano,1970   - 0.539 0.271 -0.0214 0.339 0.139

Reddy,1984 0.4342 0.5390 0.1806 -0.0214 - -

Present 0.4322 0.5388 0.1816 -0.0213 0.3387 0.1368
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Fig.2: The in-plane normal stress σx vs. normalized 
thickness of simply supported square

Fig.3: The in-plane normal stress σy vs. normalized 
thickness of simply supported  square plate.

plates rest on simply supported anti-symmetric cross-ply 
laminated composite plates are analyzed and compared with 
the higher order solution theories. The verification problems 
by considering different observations.
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square plate for constitutive and equilibrium equations. 

Fig.5: The transverse shear stress normalized thickness for 
simply sup square plate for constitutive and equations.

Obdervation 
 A two-ply [0/90]1 simply supported anti-symmetric cross-
ply laminated plate is considered for the non-dimensional 
deflection and stresses. The laminate has been subjected to 
a sinusoidal transverse load on the top of the plate. Material 1 
is used for this analysis. The different numerical values based 
on various thickness ratio (a/h) of in-plane stresses, transverse 
shear stresses and transverse deflection are obtained from 
the present refined model as given in Table 1. The maximum 
in-plane stress and transverse stress are compared with the 
3D elasticity solution proposed by Pagano [1970] and Reddy 
theory [1984]. The result obtained from the present theory is 
in close agreement with Reddy theory of all a/h ratio. For thick 
plates, the result from the present theory has a considerable 
difference from the 3D elasticity theory by Pagano [1970] 
therefore; the present results are closely associated with the 
result of Reddy theory [1984].

Obdervation
In this observation, discussed the non-dimensional deflection 
and stresses of anti-symmetric cross-ply four-layer [0/90]2 
plates based on the present refined model for considering 
Material 2. The laminate has been subjected to a sinusoidal 
transverse load on the top of the plate. The transverse 
deflection, plane stress and transverse shear stress are 
discussed based on various thickness ratio (a/h) given in 
Table 2. Also observed that the numerical values indicate the 
percentage errors of the present model for the calculations 
of normal stresses, transverse shear stresses and transverse 

deflections are very less concerning Reddy theory [1984] 
and minimal difference in the 3D elasticity theory by Pagano 
[1970]. The numerical values based on thickness ratio (a/h) are 
4 and 10 of in-plane stresses are obtained from the present 
theory is given in Fig.2 & Fig.3, and in transverse shear stresses 
in Fig.4 & Fig.5, discussed the constitutive and equilibrium 
equation of the higher order theory compared with FSDT 
and CPT theory. The present results are compared with the 
results of Reddy theory [1984]. The thick and moderately thick 
composite laminated plates for the calculation of in-plane 
normal stresses and transverse shear stresses are in excellent 
agreement with the higher-order shear deformation theory 
by Reddy [1984].

Co n c lu s i o n s
A refined plate theory based on higher-order shear 
deformation was developed.  The derived nonlinear 
formulation has been solved by using FEM and the deflection 
and bending behavior of composite plates have been 
performed. Furthermore, the theory developed based on 
some simplifying assumptions has reduced the unknown 
variables by one i.e. only four DOFs per node are considered. 

The accuracy and effectiveness of the developed theory 
discussed in the various observation have been concluded as: 
•	 The present theory used to predict the deflection and 

stresses in compression with 3D elasticity solution theory 
gives very minimal differences and more accurate results 
than Reddy’s theory.

•	 The effect of the bending-extension coupling in cross-ply 
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square laminated plates has been more predominant in 
the case of nonlinear bending. The central deflection is 
found to be higher for the lower value of a number of 
layers due to the low coupling between bending and 
extension but the central deflection decreases as the 
number of layers increases due to the high coupling 
effect between bending and extension.

•	 The nonlinearity effect on the transverse direction 
response is to decrease the amplitude and increase the 
frequency.

•	 Due to the large geometrical nonlinearity response the 
nonlinear transient of HSDT and FSDT is apparent with 
increasing the load intensity.

In conclusion, the developed new refined nonlinear plate 
theory has been very effective and also computationally 
very efficient for the analysis of laminated composite anti-
symmetric angle-ply plates.
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