
Ab s t r ac t
Refined theory is developed for nonlinear dynamic stability of laminated composite plates based on higher order shear 
deformation theory. The developed refined plate theory is used to analyze the geometric nonlinearity or large amplitude 
effects on the dynamic stability of the composite laminated plates. Based on the shear deformation theory involving four 
dependent unknowns and satisfying the vanishing of transverse shear stresses at the top and bottom surfaces of the plate 
without using shear correction factors. The displacement functions are used to derive the non-linear strain-displacement 
relations based on the Von-Karman hypothesis. The Finite element analysis are obtained through eigenvalue formulation 
by using Navier’s solution technique. The analytical solutions developed from the present refined model are compared 
with 3D elasticity theories. The comparison shown that refined model achieves accuracy and efficient.
Keywords: laminated composite plate, Refined Model, higher-order shear deformation theory, Navier’s solution technique.
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In t r o d u c t i o n 
The laminated composite materials are used in robotics, 
automotive, marine applications, aerospace, healthcare 
instruments, and many other industries because of their high 
strength, stiffness, refractive index and thermal conductivity. 
These types of materials having excellent for the high 
structural performance of unidirectional fiber composites. 
To increase engineering applications, different laminated 
theories have been developed. As classical laminated plate 
theory (CLPT) proposed by Love [1] and Kirchhoff [2] has an 
extension of the Love–Kirchhoff classical plate theory (CPT). 
According to CPT, the midplane normally remains straight 
after and before the deformation of the plate. Reissner [3] 
developed an analytical solution of CLPT without using rotary 
inertia and transverse shear deformation effects and the 
results underestimate the thin laminate and overestimate 
the thick laminates. Timoshenko [4] has proposed the thin 
beam theory based on the shear deformation and rotatory 
inertia effects to overcome the limitations of CPT. Reissner 
[5] further extended the Timoshenko work based on the 
thick plate theory and the results are closely associated 
with the Timoshenko beam theory. The first-order shear 
deformation theory of laminated plates including transverse 
shear deformation and rotary inertia effect of the plates 
first proposed by Reissner [6]. A detailed overview of 
different shear deformation theories with their applicability 
is presented by Zhang and Yang [7]. Reddy [8] proposed 

higher-order shear deformation theory for symmetric cross-
ply composite plates for the cubic variations of in-plane 
and out-off-plane stresses. Whitney [9] developed the 
higher-order shear deformation theory for the analysis of 
cylindrical bending of cross-ply and angle-ply laminated anti-
symmetric plates with sinusoidal functions for both in-plane 
and out-of-plane displacement. Shimpi [10] first developed 
the two variable refined plate theories for isotropic plates 
and extended the work by Shimpi and Patil [11] and Kim 
and Thai [12] for laminated composite orthotropic plates. 
Guangyu [13] developed the simple third-order shear 
deformation theory based on three principles methods, first, 
the kinematics displacement reduced from the higher-order 
displacement, second, the order of differentiation in terms 
of three generalized displacements of bending plates, and 
third, each edge considered five DOFs of plate boundaries. 
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A new refined plate theory for the analysis of static, bending 
and free vibration of orthotropic laminated composite plates 
was developed by Adim et al [14]. Ghadiri and Safarpour [15] 
investigated the free vibration behavior of magneto-electro-
elastic composite materials subjected to thermo-electro-
magnetic loading based on first-order shear deformation 
theory. Hirwani et al [16] discussed the implicit transient 
response of the shear deformable layered composite plate 
under mechanical transverse loading. Ghadiri et al [17] 
discussed the free vibration behavior of functionally graded 
size-dependent rotating nanobeams based on a nonlocal 
continuum model. Ghadiri and Safarpour [18] developed 
the theory on the free vibration behavior of a functionally 
graded porous cylindrical microshell subjected to the thermal 
environment based on first order shear deformation shells 
and modified couple stress theory. Barooti et al [19] have 
suggested a spinning 3D single-walled carbon nanotubes for 
the influence of critical speed on free vibration behavior by 
using modified couple stress theory. Safarpour and Ghadiri 
[20] proposed a model based on the influence of rotating 
speed and velocity of viscous fluid flow of spinning single 
walled carbon nanotubes for the investigation of the free 
vibration behavior of the materials. Zine et al [21] discussed 
the bending and free vibration of multilayered plates and 
shells based on new higher order shear deformation theory. 
Hirwani et al [22] developed  two higher-order kinematic 
models to calculate the nonlinear bending and stress value of 
internally damaged composite flat panel layered structures. 
Fallah and Karimi [23] study the nonlinear bending based 
on transverse mechanical loading of functionally graded 
circular sector plates with simply supported radial edges. 
Reddy [24] proposed the nonlinear theory by using finite 
element analysis of anti-symmetric angle ply laminated plates 
for out-off plate deformation.Von Karman [25] proposed the 
theory based on geometrically nonlinear normal and shear 
strain displacement analysis. This Von Karman non-linear 
theory was extended to a geometrically nonlinear analysis 
by Schmidt [26]. A nonlinear finite element model has been 
developed by Park et al [27] for the study of natural frequency 
and critical buckling of composite plates by using the von 
Karman nonlinearity function based on FSDT. Xia and Shen 
[28] developed a model based on HSDT by using von Karman 
nonlinear functions. 

The present research accounts for the Dynamic Stability 
of laminated composite plates based on simplified higher 
order shear deformation theory in conjunction with Von 
Karman nonlinear strain equations. This paper simplified 
the transverse displacement field into bending and shears 
components respectively with reduced to four unknowns. 
Hamilton’s principle is used to derive the equation of motion 
of the plates. The closed-form analytical solutions are 
obtained through eigenvalue formulation by using Navier’s 
solution technique. Lastly, discuss the accuracy of the present 
theory based on the 3D elasticity theory proposed by Noor 
[29] and Reddy [24]. 

Theoretical formulation
The displacement field of the HSDT by:
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Where, u0, v0, and w0 are the displacement functions of the 
coordinate points (x, y, z) on the reference plane and ϕx and 
ϕy are the mid-plane rotation about horizontal axes. The 
functions ζx, ζy, ψx, and ψy are to be evaluated by using the 
condition that the transverse shear stress at the upper and 
bottom surfaces of the plate is zero.
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For, laminated plates, these approaches are equivalent to the 
corresponding shear strain:
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Then, we obtained,
0yζ = 0,xζ =          (2.5)
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Substituting equation (2.6) in eqn. (2.1), the displacement 
field becomes:
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The mid-plane rotations are assumed to be similar in the x 
and y directions. Therefore, the expression can be written,  
ϕx =  ̶∂ wb/∂ x and ϕy =  ̶∂ wb/∂ y, 		           
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The displacement field of eqn. (2.7) based on the above 
assumptions can be written:
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The nonlinear Von Karman strain based on displacement 
functions in Eq. (2.8) is:
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Constitutive Equations 
The orthotropic plate consists of ‘n’ lamina layers of x, y, 
and z coordinate axes as shown in Fig.1. The plate laminate 
thickness h and horizontal sides a and b are considered. Each 
lamina in the laminate has a material symmetry with a lamina 
plane parallel to the coordinate plane.
The governing differential equations for a laminate can be 
written:
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Where Qij is the material constants in the axes of the lamina. 

The constitutive relations of the kth layer is given:
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Wherè Qij def ined laminate constants of mater ials 
transformation from by [30].

Equilibrium Equations
The equation of motion by Hamilton’s principle is given:
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Where, δU, δW, and δK are the virtual strain energy, virtual 
work done, and virtual kinetic energy, respectively. 
The strain energy variation can be defined:
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The following strains N, M, P, Q and R are defined

                                                                                                     (4.3)
     (4.4)

The variation of work done has been defined:

                                                                    (4.5)

Where q is the external load applied transversely.
The Kinetic energy of the laminate can be defined:
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Where dot- superscript defined the derivatives concering 
time variable t, the mass 

Fig 1: Lamina arrangement of composite plate
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density in each layer is ρ  and (I0, I1, I2, I3, I4, I5) are the mass 
moment of inertias:         (4.7)
The energy functions δU, δW and δK are substituted in Eq. 
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When the transverse shear effect (ws = 0) has been neglected 
the governing differential equations of composite laminated 
plates behave as a classical plate theory.

The finite element formulation
The total solutions described by the finite element techniques 
of the plate domain have been discretizing in the number of 
elements: 
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The generalized displacement of the plate is defined:
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Where qI  = [u0I, v0I, wbI, wsI]
T is the displacement vector nodal 

degree of freedom (DOFs.) associated with node I and NI (ξ, η) 
is the shape functions of Lagrange eight-node iso-parametric 
quadrilateral elements are used,

Fig.2: An eight-node quadrilateral iso-parametric element

To describe the weak form solutions of refined nonlinear 
higher-order theory, the strain and displacement relation 
can further be simplified,
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The nonlinear components can be defined:
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The in-plane and shear strain can be rewritten in the 
following form:
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Table: 1. The central deflection (w/h) under various load and boundary conditions for anti-symmetric cross-ply 
and anti-symmetric angle ply.

Plate 
thickness

Loading 
condition

Load 
parameter

Anti-Symmetric cross-ply Anti-symmetric angle-ply

SSSS CCCC CCSS SSSS CCCC CCSS

a/h=10 Uniformly 
distributed load

3 0.04075 0.01468 0.01788 0.03275 0.02653 0.02154

5 0.06800 0.02410 0.03075 0.05475 0.02846 0.03429

15 0.20125 0.07208 0.09225 0.18667 0.08795 0.11235

30 0.37566 0.14354 0.18285 0.32547 0.16875 0.21365

45 0.55660 0.21275 0.26855 0.45425 0.23451 0.30125

100 1.03550 0.43950 0.55895 0.92975 0.48974 0.61325

Sinusoidal load 3 0.02706 0.01145 0.01356 0.02215 0.01214 0.01524

5 0.04542 0.01875 0.02216 0.03625 0.01957 0.02475

15 0.13986 0.05314 0.06523 0.11542 0.05615 0.07198

30 0.26628 0.11423 0.12657 0.21586 0.11996 0.14225

45 0.38940 0.16475 0.19878 0.31285 0.17496 0.21988

100 0.75546 0.34056 0.38457 0.61835 0.36174 0.45567

a/
h=100W

Uniformly 
distributed load

10 0.11987 0.03214 0.03889 0.09847 0.04411 0.05125

30 0.34688 0.09486 0.12871 0.27856 0.11242 0.15942

50 0.55320 0.15694 0.19724 0.44100 0.17825 0.25687

70 0.74465 0.22750 0.27423 0.57662 0.24512 0.35112

90 0.88654 0.28744 0.35687 0.72115 0.31132 0.44216

100 0.98025 0.31658 0.38564 0.78723 0.33452 0.48635

Sinusoidal load 10 0.07625 0.03758 0.03745 0.05889 0.03485 0.04412

30 0.23285 0.07964 0.09328 0.18356 0.08456 0.11228

50 0.37386 0.12415 0.23687 0.29452 0.13425 0.17987

70 0.48785 0.16894 0.27108 0.39965 0.18235 0.24618

90 0.62822 0.21457 0.25547 0.49696 0.32214 0.40123

100 0.68596 0.23624 0.28131 0.64395 0.34612 0.43227

 [ ]
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Table: 2: Central deflection of laminated composite plate versus time based on Linear and Nonlinear analysis

Time 
 t(x10-3 s)

                     Linear Analysis                Nonlinear Analysis

  FSDT
(Lee&Reddy)

HSDT
(Lee&Reddy)

Present    FSDT
(Lee&Reddy)

HSDT
(Lee&Reddy)

Present

0.5 0.3179 0.2842 0.2845 0.3179 0.2841 0.2955

1.0 1.3249 1.3480 1.3495 1.2848 1.3210 1.3322

1.5 2.1768 2.1916 2.2845 1.8638 1.9535 1.8784

2.0 2.2983 2.5440 2.5644 1.4674 1.8584 1.9564

4.0 0.5573 0.4342 0.5217 1.2969 0.9988 0.8879

6.0 1.6739 2.0589 2.0688 0.5528 0.7597 0.8779

8.0 1.1432 0.8399 0.8269 1.2449 1.6265 1.6457

10.0 1.2147 1.7084 1.7546 1.2592 0.8573 0.8897

20.0 1.4209 1.4162 1.4255 1.0943 1.1821 1.2824

30.0 1.3103 1.2874 1.2978 1.0664 1.2147 1.3215

40.0 1.2636 1.3822 1.3624 1.0970 1.1899 1.2789

60.0 1.2750 1.3566 1.3567 1.0882 1.1735 1.1856

80.0 1.2772 1.3602 1.3544 1.0895 1.1747 1.1892
100.0 1.2849 1.3603 1.3712 1.0960 1.1749 1.1654
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The Newmark’s time integration method is employed for 
the calculation of dynamic response in time history. The 
solution for the dynamic response in terms of displacement is 
considered zero at the initial time t = 0 and, In the second step, 
the iteration of displacement at (n+1) Dt is expended:
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Where b = 0.25 and g = 0.5 were taken from by Fisette et al [31].

Nu m e r i c a l Re s u lts
A MATLAB-based FEM code is developed based on the above 
formulation. The accuracy of the present theory is verified 

with the help of various numerical examples.
In all the examples the shear correction factor is considered 
as 5/6 and the material constants are:

Material 1

 E1/E2 = 40, G23/E2 = 0.5, G12/E2 = G13/E2 = 0.6 and 
ν = 0.25  [12]

Material 2
 E1/E2 = 25, G23/E2 = 0.2, G12/E2 = G13/E2 = 0.5 and ν = 0.25  [32]
Where, subscripts used 1, 2, and 3 are the x, y, and z axes of 
the laminated plates. 
The nonlinear dynamic stability of laminated composite 
plates rest on simply supported anti-symmetric cross-ply 
and angle-ply laminates are analyzed and compared with the 
higher order solution theories and validation of the present 
theory has been carried out. 

Observation
This section, discussed the central deflection of laminated 
plates based on various load parameters from 3 to 100 
for two plate thicknesses a/h = 10 & 100 with material 1 is 
considered. Table 1 compared the deflection results of three 
different boundary conditions such as all four sides simply 
supported (ssss), all four sides clamped (cccc) and two sides 
simple supported and two sides clamped (ccss) based on anti-
symmetric cross-ply and anti-symmetric angle-ply laminated 
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Table: 3. Central deflection of laminated composite thin plate versus time based on
Linear and Nonlinear analysis.

Time 
 t (x10-3 s)

                  Linear Analysis                  Nonlinear Analysis

FSDT
(Lee&Reddy)

HSDT
(Lee&Reddy)

Present FSDT
(Lee&Reddy)

HSDT
(Lee&Reddy)

Present

0.5 0.0015 0.0016 0.0016 0.0015 0.0016 0.0018

1.0 0.0072 0.0079 0.0080 0.0072 0.0079 0.0085

1.5 0.0186 0.0207 0.0212 0.0186 0.0207 0.0218

2.0 0.0385 0.0408 0.0415 0.0385 0.0408 0.0510

6.0 0.5865 0.5499 0.5588 0.5813 0.5464 0.5554

10.0 1.3558 1.3376 1.3485 1.2308 1.2582 1.2685

30.0 0.5591 0.6741 0.7712 0.6966 0.3694 0.3736

50.0 1.7905 1.8194 1.8432 0.4843 0.6128 0.6232

70.0 0.7000 0.6324 0.6525 0.5808 1.1899 1.1988

100.0 0.8036 0.9235 0.9500 0.7754 0.9260 0.9564

200.0 1.0487 1.1903 1.1878 0.8840 0.9938 0.9857

300.0 1.1218 1.2202 1.3212 0.8439 0.9344 0.9544

400.0 1.1434 1.2074 1.2275 0.8404 0.9187 0.9325

500.0 1.1483 1.2084 1.2156 0.8414 0.9194 0.9188

plates under uniformly distributed load and sinusoidal load 
conditions. Irrespective of plate thickness and boundary 
condition the ssss show a larger amplitude value compared 
to cccc and ccss for two conditions anti-symmetric cross-ply 
and anti-symmetric angle-ply laminates. It is also shown from 
the table that the amplitude increases as the load parameter 
increases.

Observation
A time step is used to determine the linear and nonlinear 
response of central deflection of thick and thin laminated 
plate based on the finite element method of mesh size 4 x 4 
is discussed in Table 2 and Table 3. The intensity of transverse 
load for a thick plate is considered q = 5.0 x 107 and the 
transverse load intensity for a thin plate is considered q = 1.0 
x 104 . It can also be observed that the effect of nonlinearity 
for the transverse deflection in the dynamic analysis is a 
small difference compared to HSDT proposed by Lee & 
Reddy [2004] for time responses 6.0 s  and 10.0 s. Similarly, 
for thin laminated plates, the transverse deflections in the 
dynamic analysis are small differences compared to HSDT 
invented by Lee & Reddy [2004]. It can also be observed that 
the other values are closely in agreement with the values of 
HSDT and FSDT. 

Co n c lu s i o n
A refined nonlinear plate theory based on higher-order 
shear deformation was developed.  The derived nonlinear 

formulation has been solved by using FEM. Furthermore, the 
theory developed based on some simplifying assumptions 
has reduced the unknown variables by one. 

The accuracy and effectiveness of the developed theory 
discussed in the various problems have been concluded as: 
•	 The refined model is used to analyze the Linear and 

Nonlinear dynamic behavior of the laminated composite 
plates based on the geometry, material properties, 
boundary condition and types of loading.

•	 For nonlinear analysis, the Newmark time integration 
iteration technique is used in conjunction with the 
Newton-Raphson method. The numerical results have 
shown very good agreement with that of the present 
model.

•	 The effect of the bending-extension coupling in cross-ply 
square laminated plates has been more predominant in 
the case of nonlinear bending. The central deflection is 
found to be higher for the lower value of a number of 
layers due to the low coupling between bending and 
extension but the central deflection decreases as the 
number of layers increases due to the high coupling 
effect between bending and extension.

•	 The central deflection under various loads and boundry 
condition: SSSS, CCCC and CCSS for anti-symmetric cross-
ply and anti-symmetric angle-ply show similar behavior 
in nonlinear analysis. 

Due to the large geometrical nonlinearity response the 
nonlinear transient of HSDT and FSDT is apparent with 
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increasing the load intensity.
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