
Abstract
The widespread use of CMOS sensors in modern digital imaging devices has introduced a significant challenge in the form 
of rolling shutter (RS) distortions and motion blur (MB), especially under camera or object motion. Unlike CCD sensors 
with global shutters, CMOS sensors capture images row-by-row, leading to geometric distortions when motion occurs 
during exposure. These distortions are often further complicated by motion blur, resulting in visually degraded images. 
This paper addresses the challenging task of restoring a single image affected by rolling shutter motion blur (RSMB) a 
combination of both artifacts without requiring multiple frames or auxiliary sensors. We adopt a model-based approach 
that represents RSMB as a weighted integration of the sharp latent image transformed under varying camera poses. By 
discretizing the pose space and applying the Efficient Filter Flow (EFF) approximation, we enable fast and spatially accurate 
deblurring using only a single input image. The proposed framework not only recovers visually faithful reconstructions 
but also provides practical benefits for real-world applications where re-capturing the scene is infeasible.
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Introduction

With the rapid advancement and widespread adoption 
of digital photography, most modern imaging devices 

including smartphones, drones, and consumer cameras, are 
now equipped with CMOS sensors. These sensors offer low 
power consumption and high-speed performance, making 
them ideal for mobile applications[1]. However, CMOS sensors 
typically use a rolling shutter (RS) mechanism, which exposes 
the image sensor row by row rather than all at once. This 
results in characteristic distortions, especially when capturing 
scenes with motion [2].

When we revisit our photos, there is often a mismatch 
between what we remember and what was recorded. While 
our brain filters out distractions and transient details, digital 
sensors capture everything indiscriminately, including 
motion artifacts such as motion blur (MB) and rolling shutter 
distortion[3]. These effects become especially problematic 
in scenarios involving hand-held shooting, fast-moving 
subjects, or cameras mounted on moving platforms[4]. 
Correcting rolling shutter artifacts from a single image 
remains a challenging problem, as motion blur is a spatially 
variant process and RS distortions are temporally correlated[5]. 
Successful restoration often requires understanding the 
natural structure of specific scene types rather than relying 
solely on geometric assumptions [6]. Deep learning-based 
solutions, especially those employing convolutional neural 
networks (CNNs), have shown promising results by learning 
blur patterns from data instead of hand-crafted priors [7]. 

Furthermore, recent studies demonstrate that end-to-
end neural networks can jointly estimate blur kernels and 
compensate for RS artifacts, often outperforming traditional 
optimization-based methods[8].

This paper aims to address image restoration from a single 
degraded image affected by rolling shutter and motion blur. 
It focuses on recovering sharp images by estimating blur 
parameters and underlying camera motion[9].

Background 
The rolling shutter mechanism may be implemented either 
mechanically or electronically. One advantage of this method 
is that the sensor can continue accumulating photons during 
the readout process, thereby enhancing image sensitivity 
[10]. This technique is commonly employed in digital still and 
video cameras equipped with CMOS sensors [11]. However, 
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rolling shutter artifacts become particularly noticeable under 
high-speed motion or rapid light fluctuations [12]. Although 
some CMOS sensors incorporate global shutter functionality, 
the vast majority in consumer devices utilize rolling shutters 
due to cost and power efficiency [13]. In contrast, CCD (Charge-
Coupled Device) sensors are generally more sensitive and 
expensive [14]. They typically employ global shutters, which 
capture the entire image simultaneously [15]. As a result, CCD-
based systems are largely immune to the motion-induced 
distortions characteristic of rolling shutter systems [16], as 
illustrated in Figure 1. 

Theoretical  Modelling
This paper focuses on restoring images affected by rolling 
shutter motion blur (RSMB) using different models. Unlike 
traditional methods that rely on multiple frames or external 
motion sensors, this approach uses only a single blurred 
image, reducing computational and hardware dependencies. 
The method models the image formation process by 
considering 3D camera motion, primarily rotation, which 
leads to spatially variant blur. The blur is represented as 
a weighted combination of camera poses, each inducing 
a unique homography on the image plane. To manage 
computational cost, the model adopts the Efficient Filter 
Flow (EFF) approximation, assuming locally uniform blur 
within small patches [17]. This significantly accelerates the 
deblurring process while maintaining accuracy. Beyond 
motion correction, the framework can also remove occluding 
objects from images taken in crowded scenes. 

This paper is motivated by both practical and emotional 
factors: many blurred or occluded images capture moments 
that cannot be recreated. Rather than proposing new 
hardware, the aim is to enhance post-processing capabilities, 
effectively turning computational models into the “brain” 
behind the digital “eyes” of modern cameras.

RSMB Model
Although motion blur and rolling shutter (RS) distortions 

are inherently interrelated—both arising from relative motion 
between the camera and scene—most prior approaches 
have addressed them independently. Traditional deblurring 
algorithms typically fail to account for RS-induced wobble, 
while existing RS correction methods generally do not handle 
motion blur. In this section, we present a unified generative 
model for rolling shutter motion blur (RSMB).

As previously discussed, in cameras employing CCD 
sensors, the entire image is captured at a single time instance, 
and therefore undergoes a uniform camera motion during 
exposure. In such a scenario, the motion-blurred image 
B ϵRM×N can be modeled by integrating the sharp latent 
image L along the continuous trajectory of the camera over 
the exposure time interval  [0, te] [4]. It is given by following 
equation: 

Here, P(t) denotes the 6-degree-of-freedom (6-DoF) 
camera pose at time instant t0, and LP(t)​ is the latent sharp 
image transformed according to the camera pose P(t). The 
parameter te represents the total shutter duration.

In contrast, CMOS sensors with a rolling shutter capture 
the image row-by-row over time, resulting in each sensor 
row being exposed under a different camera pose due to 
the staggered exposure window. Thus, a global warp for the 
entire latent image cannot be applied; instead, each image 
row must be modeled independently. The ith row of a rolling 
shutter motion-blurred image is expressed as:

where represents the transformed ith row of the latent image 
L. te is the exposure time for a single row, and tr denotes the 
inter-row readout delay, i.e., the time difference between the 
start of exposure for consecutive rows.

Recent RS deblurring models discretize this continuous 
formulation (Eq. 2) into a temporal sampling model by 
integrating the transformed image row over a set of discrete 
camera poses. This leads to:

where P denotes the pose-space, P
iL  is the transformed ith 

row of the latent image under pose P and )( pω′  is weight 

A

B

Figure 1: (A&B) Temporal resolution of rolling-shutter (left) 
and global shutter (right), where te is exposer time and tr is 

read-out time



Reconstructing Reality Unified Correction of Rolling Shutter and Motion Blur from a Single Image

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 14, Issue 1 (2022)132

representing the time spent at each pose—effectively 
modeling the motion density function (MDF).

To enhance accuracy, the pose space P is discretized 
finely such that the displacement between adjacent poses 
is less than one pixel. This yields the following discrete 
approximation:

Here is the discretized pose-space, and the discrete weight      
)(' Ti pω  represents the aggregated weights over a small 

neighborhood of pose Pj. This discretized motion model 
enables computationally efficient and spatially accurate 
deblurring under rolling shutter and motion blur conditions.

Conclusion
This work presents a unified framework for restoring 

images degraded by rolling shutter distortion and motion 
blur using a single input image. By modeling the image 
formation process through 6-DoF camera motion and 
temporally staggered row-wise exposure, we provide a 
physically grounded and computationally tractable method 
for deblurring RS images. The discretized pose-space 
representation, combined with the Efficient Filter Flow 
approximation, enables efficient inference while preserving 
spatial accuracy. Unlike traditional methods that handle RS 
and motion blur separately, our approach integrates both 
phenomena into a single generative model. Beyond aesthetic 
enhancement, the method supports high-level tasks such as 
occlusion removal and face recognition, offering significant 
practical value. Ultimately, this research advances post-
capture image restoration techniques, aiming to bridge the 
gap between what the camera records and what the human 
eye perceives.
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