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Advanced Network Telemetry for AI-Driven Network
Optimization in Ultra Ethernet and InfiniBand
Interconnects
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ABSTRACT

The sheer proliferation of terascale artificial intelligence (Al) workloads (in disk drive, Hadoop and NoSQL) like distributed
deep learning, model inference pipelines, has put unprecedented pressure on data center interconnects. As part of capturing
these demands, there is a rampant use of high-performance network technologies such as the Ultra Ethernet, and the
InfiniBand in modern infrastructures with ultra-low latency and high bandwidth. But conventional telemetry systems do
not have the density and real-time sensitivity to best tune network dynamics with such loads. The topic of the paper at
hand is the development of advanced network telemetry and Al-based optimization in order to improve performance,
identify anomalies, and mitigate congestion in high-speed interconnects. Our architecture is inspired by telemetry and
is based on programmable data planes, in-band telemetry and high bandwidth monitoring engines that use to emit
highly granular, low-latency data streams. The streams are passed through Al/ML models, such as unsupervised anomaly
detectors, predictive congestion algorithms, to dynamically adjust routing and resource allocation. Our findings indicate
that this method works well in enhancing usage of communications networks, latency and pro-active management of
network health. The paper advances a scalable design of a real-time intelligent network management in next-generation
Al systems, and proposes a set of factors it would be necessary to consider in future studies along the telemetry-Al-high-
speed networking nexus.

Keywords: Ultra Ethernet, InfiniBand, Network Telemetry, Al-Driven Optimization, High-Performance Networking, Anomaly
Detection.
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INTRODUCTION Corresponding Author: Oluwatosin  Oladayo ~Aramide,

he accelerated scholastic intensity of the ecumenical

intelligence (Al) operations, mostly deep learning model
mapping and real-time inference alongside distributed
computing, has acutely reshaped the conditions under
which modern data center networks should proceed. The
workloads are now being implemented in large clusters
of GPU-accelerated compute nodes, and the network
interconnects are becoming the major determinants of
throughput, latency and scalability. As a result, the next-
generation Al infrastructures are moving to the use of
high-speed interconnects like the Ultra Ethernet and the
InfiniBand which provide the extremely low latency and
huge bandwidth that Al requires to perform at scale over the
long-term (Katragadda, 2021; Girondi, 2024).

Ultra Ethernet and InfiniBand interconnects are purpose-
built for environments where deterministic latency,
congestion avoidance, and lossless transport are crucial.
However, the effectiveness of these technologies hinges on
real-time insight into network behavior. Traditional network
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monitoring techniques, such as SNMP, NetFlow, and sFlow
lack the granularity and responsiveness required to manage
the dynamic behavior of Al-intensive traffic patterns (Bajpai,
2023; Kadiyala, Chilukoori, & Gangarapu, 2024). As Al-driven
applications increasingly rely on distributed gradient
updates, parameter synchronization, and memory-intensive
workloads, even microsecond-level delays or short-lived
congestion events can degrade training efficiency and model
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convergence (Foroughi, Brockners, & Rougier, 2023; Rzym,
Masny, & Chotda, 2024).

To address these challenges, the integration of advanced
network telemetry with Al-based optimization has emerged
asacritical research direction. Al-enhanced telemetry systems
enable real-time collection and analysis of performance
metrics such as queue depth, packet loss, flow duration, jitter,
and congestion events. By leveraging in-band telemetry (INT),
programmable switches, and SmartNICs, telemetry data can
now be collected at a fine-grained level and processed using
Al models for predictive and prescriptive optimization (Cugini
et al., 2023; Quan et al,, 2022). This paradigm supports the
development of intelligent control planes that can adapt
routing decisions, preempt congestion, and improve overall
network efficiency through continuous feedback loops (Mozo
etal,, 2022; Umoga et al., 2024).

Moreover, the deployment of Al/ML models within the
network stack introduces new possibilities for dynamic
resource management. Anomaly detection may be performed
with unsupervised learning methods, and reinforcement
learning itself allows flexible routing algorithms to use past
data and real-time performance data of previous instances
(Lyu, 2022; Balasubramanian, n.d.). Such techniques work
especially well in high throughput, low latency applications
where deterministic performance is mandatory. Notably,
these strategies are only effective when it is possible to access
telemetry data that is not merely timely and accurate, as well
as semantically-rich (Foroughi, Brockners, & Rougier, 2023;
Zdrojewski, 2024).

Within a framework of changing network architectures,
Al-based telemetry also has a place within the greater vision
of digital twins and self-optimizing networks. As an example,
one can analyze and forecast the network behavior by using
digital twin models to enable the generation of proactive
response to falls, as well as streamlined configuration (Mozo
et al., 2022; Fayad, Cinkler, & Rak, 2024). In particular, this
is applicable during the beyond 5G (B5G) and 6G network
era when programmable data plane, software-defined
networking (SDN) and Al converge to enable ultra-reliable
and low-latency communication (Manzoor, Raza, & Domzal,
2024).

In spite of the development, big research gaps are still
present. The problems that currently affect telemetry systems
are usually a scalability and interoperability limitation as
well as the inability to interpret the data. The improvement
on performance via Al-driven optimization should also find
equilibrium with the overhead to constantly monitor the
workflows (Girondi, 2024; Cugini et al., 2023). The demand
of rapidly configurable and intelligent network fabric is
increasingly a necessity as the workloads in Al are more
complex and latency sensitive.

The paper regards these challenges by suggesting
telemetry-based infrastructural framework to Al-based
network optimization in both Ultra Ethernet and InfiniBand
networks. The system integrates high-resolution, telemetry-
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rate, and Al/ML modeling to optimize congestion, anomaly,
and dynamic routing in high-performance computers (HPC)
clusters and Al training fabrics. Our contribution to this work is
towards the development of scalable and smart interconnect
solutions that could support the ever increasing needs of
Al-native infrastructure.

Background and Motivation

The exponential growth in the scale and complexity of
Al workloads has introduced unprecedented challenges
in data center and high-performance computing (HPC)
environments. Large-scale distributed training of deep
learning models, inference at edge and core nodes, and real-
time Al-driven services demand ultra-reliable, low-latency,
and high-bandwidth communication fabrics. As traditional
Ethernet standards reach their scalability and performance
limits, Ultra Ethernet and InfiniBand have emerged as the
dominant interconnects in next-generation Al-centric
infrastructures (Katragadda, 2021; Girondi, 2024).

The Network Sensitivity of Al Workloads

Modern Al workloads such as distributed stochastic gradient
descent (SGD), reinforcement learning pipelines, and
large language model (LLM) inference are highly sensitive
to inter-node communication latency and bandwidth
variation. InfiniBand, known for its Remote Direct Memory
Access (RDMA) support, provides ultra-low latency and high
throughput, making it a preferred choice for GPU clusters and
HPC deployments (Girondi, 2024). Similarly, Ultra Ethernet
aims to close the performance gap between Ethernet and
InfiniBand by introducing congestion control enhancements,
load balancing, and telemetry-based feedback mechanisms
(Katragadda, 2021).

Despite the performance benefits, the deterministic
behavior required by Al models is often disrupted by
microbursts, queue buildup, and hidden congestion
events, which are not adequately captured by conventional
telemetry tools (Quan et al., 2022). Consequently, real-time
optimization of these high-speed interconnects cannot rely
solely on static routing or pre-configured quality of service
(QoS) rules.

The Evolution of Telemetry in High-Speed Networks

Traditional telemetry approaches such as SNMP, NetFlow, and
sFlow were designed for coarse-grained monitoring, typically
at intervals of several seconds to minutes. These methods
fail to capture transient phenomena like micro-congestion,
packet jitter, or queuing dynamics at the nanosecond scale
(Foroughi, Brockners, & Rougier, 2023). Al applications, in
contrast, require near real-time visibility into fabric-level
metrics, such as end-to-end packet delays, flow drop rates,
ECN marks, queue depths, and path utilization.

Emerging telemetry paradigms including in-band
network telemetry (INT), programmable data planes using
P4, and high-bandwidth monitoring engines offer more
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Table 1: Comparison of traditional telemetry (SNMP, sFlow) and advanced telemetry (INT, P4, Al-enhanced) across metrics
such as granularity, latency, data volume, and Al integration readiness:

Telemetry Technique Granularity Collection Latency Data Volume Suitable for Al?
SNMP Device-level High (seconds) Low No
sFlow/NetFlow Flow-level Medium (ms-s) Medium Limited
In-Band Telemetry Packet-level Low (us) High Yes
P4-Based Monitoring Customizable Very Low (us) High Yes
High-Level Telemetry Data Pipeline for Al-Driven Optimization
( N\ [ A A4 A
Programmable 41 Telemetry i Feature J1 Al Inference
Switches/NICs Aggregator Extractor Modules
\ J J \ J

Fig. 1: It shows the flow of data from programmable switches/NICs through to Al inference modules.

granular insights (Cugini et al., 2023; Fayad, Cinkler, & Rak,
2024). These technologies provide telemetry at per-packet or
per-flow levels, enabling dynamic feedback loops between
the data plane and Al controllers.

Al as a Catalyst for Real-Time Optimization

Integrating Al and machine learning into network
operations introduces the potential for self-adaptive,
intelligent network behavior. Almodels can infer performance
bottlenecks, predict congestion events before they occur,
and optimize path selection in real time (Umoga et al., 2024;
Bajpai, 2023). Supervised learning can classify anomalies,
while unsupervised methods and deep neural networks are
effective in detecting previously unseen performance issues
(Rzym, Masny, & Chotda, 2024).

Recent architectures propose closed-loop telemetry-
feedback systems, where telemetry feeds Al models that, in
turn, update network forwarding rules or queue management
policies autonomously (Mozo et al., 2022; Kadiyala, Chilukoori,
& Gangarapu, 2024). Furthermore, Al Ops and observability
frameworks are increasingly being adopted to automate
diagnostics, fault recovery, and performance tuning in data
center networks (Bajpai, 2023; Zdrojewski, 2024).

20 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 17, Issue 1 (2025)

Research Gap and Motivation

While both InfiniBand and Ultra Ethernet provide the
physical capabilities to support Al workloads, their potential
is constrained by insufficient telemetry integration and lack
of Al-aware feedback mechanisms. There is a clear research
gap in developing telemetry frameworks that not only collect
high-resolution data but also integrate seamlessly with Al
models capable of real-time decision-making (Manzoor, Raza,
& Domzal, 2024). The motivation for this work is grounded in
the need to build a scalable, intelligent telemetry ecosystem
that transforms high-speed networks from passive conduits
into active, self-optimizing infrastructures (Balasubramanian,
n.d.; Lyu, 2022).

By leveraging advances in programmable networking, Al
inference, and telemetry processing, this research proposes
an architecture that can unlock a new level of performance,
resilience, and adaptability in next-generation Al fabrics.

Architectural Framework for Al-Driven
Telemetry Integration

The increasing complexity and scale of Al workloads
demand high-performance interconnects that can support
low-latency, high-bandwidth data flows. Ultra Ethernet and
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InfiniBand have emerged as leading contenders in this space
due to their capacity for scalable, low-jitter communication.
However, without real-time visibility into fabric-level metrics,
these technologies alone are insufficient to meet the
dynamic needs of modern Al systems. An Al-driven telemetry
integration framework is therefore necessary to enable
real-time optimization, anomaly detection, and congestion
avoidance through feedback-based control systems.

This architectural framework is composed of three main
layers: the telemetry data pipeline, Al model integration,
and a real-time feedback control loop. Each layer is crucial
for ensuring end-to-end visibility and intelligent response in
high-speed networks.

Telemetry Data Pipeline

The foundation of this framework is a robust telemetry
infrastructure that enables the collection of granular, high-
frequency data across network devices such as switches,
routers, and NICs. Advanced telemetry mechanisms such as
In-band Network Telemetry (INT), P4-programmable data
planes, and SmartNIC instrumentation are employed to
extract sub-second-level metrics like queue occupancy, flow
RTT, ECN marks, and buffer utilization (Foroughi, Brockners,
& Rougier, 2023; Cugini et al., 2023).

These telemetry streams are ingested through scalable
collectors capable of handling high-volume data, then
preprocessed using feature extraction pipelines that
normalize, label, and aggregate the data for downstream
Al models. Real-time telemetry demands low-overhead
data transport protocols such as gRPC or Kafka over high-
throughput channels to maintain fidelity without adding
latency (Rzym, Masny, & Chotda, 2024).

Al/ML Model Integration

Once telemetry data is preprocessed, it is fed into a set of Al/
ML models tailored for specific network optimization tasks.
These models are designed to perform:

« Anomaly Detection

Unsupervised models such as Autoencoders or Isolation
Forests detect statistical outliers in latency, packet drops,

or buffer states (Umoga et al., 2024; Rzym, Masny, & Chotda,
2024).

« Congestion Prediction
Time-series forecasting models including LSTM or Temporal

Graph Neural Networks predict congestion points before
they materialize (Mozo et al., 2022; Quan et al., 2022).

+ Routing Optimization

Reinforcement learning agents dynamically adjust routing
decisions or rate-limiting parameters based on learned
policies (Manzoor, Raza, & Domzal, 2024).

These models are trained offline using historical telemetry
datasets and then deployed in lightweight inference engines
at the edge or within the network controller layer for real-
time decisions. Model explainability is maintained through
SHAP or LIME-based feature attribution methods to ensure
compliance and trust in automated systems (Bajpai, 2023).

Real-Time Feedback Control Loop

The final and most critical component of the architecture is
a closed-loop feedback system. Once Al models generate
insights or control directives, these are applied immediately
to network elements using southbound APIs like gNMI,
OpenConfig, or custom SDN controllers. For example,
congestion prediction from a neural network can trigger
proactive flow rerouting or queue scheduling on InfiniBand
switches (Girondi, 2024; Katragadda, 2021).

The feedback loop operates on a tightly bound decision
interval, typically ranging from 50 ms to 500 ms, depending
on application latency sensitivity and hardware capabilities.
A centralized controller may be used for coordination,
but edge-based inference and distributed learning are
increasingly favored to reduce latency and enable localized
adaptation (Fayad, Cinkler, & Rak, 2024; Zdrojewski, 2024).

Edge learning agents are particularly effective in
InfiniBand environments where congestion points arise
rapidly due to RDMA flows. These agents continuously
monitor local telemetry and execute inference routines
to adjust queue weights or route selection dynamically
(Kadiyala, Chilukoori, & Gangarapu, 2024).

Table 2: Al Model Types and Their Application in Telemetry-Driven Network Optimization

Model Type Purpose Input Features Output Action Deployment Layer
Autoencoder Anomaly detection Latency, ECN, packet loss Alert Controller

LSTM Congestion prediction Time-series RTT Rerouting Edge

DQON Adaptive rate control Queue depth, packet loss Flow rate policy Switch

CNN Pattern recognition Traffic heatmaps, packet flows  Path classification Controller/Edge
GNN Topology-aware decision  Link state, graph connectivity =~ Routing table updates Control Plane
SVM Flow classification Packet headers, port stats Traffic prioritization NIC/Edge Node

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 17, Issue 1 (2025)
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Architectural Strengths and Innovations

This architecture demonstrates several strengths that
distinguish it from conventional network management
systems:

« Granularity
Enables microsecond-level visibility into network events

through programmable telemetry (Foroughi, Brockners, &
Rougier, 2023).

- Automation
Integrates Al models capable of self-adjusting to network

conditions with minimal human intervention (Kadiyala,
Chilukoori, & Gangarapu, 2024).

« Predictiveness

Shifts optimization from reactive to proactive through
predictive analytics (Mozo et al., 2022; Quan et al., 2022).

« Scalability

Supports modular deployment across data center topologies

and edge infrastructures (Balasubramanian, n.d.; Lyu, 2022).
This multi-layered architecture provides a scalable

and intelligent platform for next-generation Al fabrics,

enabling reliable and high-throughput communication in

environments that demand deterministic performance.

Experimental Setup

To evaluate the effectiveness of Al-driven network
optimization using advanced telemetry in Ultra Ethernet
and InfiniBand fabrics, we developed a simulation-based
experimental environment that mimics large-scale Al
workloads in a distributed computing context. This section
outlines the infrastructure configuration, telemetry capture
mechanisms, Al model design, performance metrics, and
visualization elements used to validate the framework.

Infrastructure Simulation Environment

The simulated testbed replicates a high-performance
computing (HPC) cluster with 128 interconnected compute

nodes, each emulating multi-GPU Al training workloads

distributed via Remote Direct Memory Access (RDMA)

protocols. The virtual environment was constructed using

Mininet enhanced with P4 programmable switch support

and gRPC telemetry interfaces.

Each node is configured with:

«  Emulated RDMA NICs supporting RoCEv2

« Atelemetry agent that captures real-time metrics via INT
(In-Band Network Telemetry)

« A programmable switch (emulating Ultra Ethernet or
InfiniBand QoS models)

The underlying topology was inspired by Fat-Tree and
Dragonfly+ architectures, reflecting data center-scale fabrics
as described by Girondi, who emphasized GPU-centric
interconnect efficiency in high-performance workloads
(Girondi, 2024).

The telemetry pipeline is built to gather queue depth, ECN
marks, flow latency, jitter, and packet loss in real time. This
mirrors the telemetry structure proposed in ADT (Al-Driven
Telemetry) processing on routers, where edge collection
points are enhanced by Al accelerators for inferencing
(Foroughi, Brockners, & Rougier, 2023).

Al Workload Generation and Telemetry Ingestion

Synthetic Al workloads were generated using distributed
deep learning job traces modeled after PyTorch-DDP and
Horovod communication patterns. These workloads were
scaled to saturate 70%-90% of the network bandwidth,
stressing the congestion control mechanisms of Ultra
Ethernet and InfiniBand.

Telemetry data was ingested through a Kafka-based
pipeline, enabling real-time stream processing and buffering.
The system leverages feature engineering techniques from
prior Al-telemetry integration efforts, such as those in Mozo
et al's digital twin model for network optimization (Mozo
et al., 2022).

Captured telemetry attributes include:

Instantaneous flow RTT (Round Trip Time)

Congestion window variation

Microburst detection

Table 3: Telemetry Features for Al Modeling

Feature Name Description Use in Al Model

Queue Depth Packet queue length at switch ports Congestion forecasting
Flow RTT End-to-end latency between node pairs Path anomaly detection
ECN Marks Congestion signaling bits from switches Traffic rerouting triggers

Path Utilization
Packet Loss Ratio

Microburst Count

Bandwidth usage on interconnect paths
Percentage of lost packets per flow

Number of short-duration, high-volume bursts

Load balancing
Fault localization

Transient anomaly identification

22 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 17, Issue 1 (2025)
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+ Real-time path utilization
These attributes served as inputs to Al models for
anomaly detection and predictive optimization.

Al Models and Training Approach
We trained two types of Al models on the telemetry dataset:

1. Anomaly Detection Module

An unsupervised autoencoder was trained to identify
deviations in flow-level behavior, detecting issues like
microbursts and packet drops in sub-millisecond intervals.
This follows the technique explored by Rzym, Masny, and
Chotda in leveraging deep neural networks for anomaly
detection in software-defined 6G networks (Rzym, Masny,
& Chotda, 2024).

2. Predictive Optimization Model

A Graph Neural Network (GNN) was implemented to predict
congestion hotspots in the next 5-second window based
on current telemetry. This model operates within a closed-
loop feedback system to suggest rerouting paths or queue
adjustments. Previous studies such as ADT and B5GEMINI
have shown that Al-based forecasts can significantly reduce
average latency and packet loss (Foroughi, Brockners, &
Rougier, 2023; Mozo et al., 2022).

Models were trained on 100,000 flow records collected
from 500 simulated Al jobs over 10 distinct network
topologies.

Performance Metrics and Evaluation

Key metrics used to evaluate the impact of telemetry-Al
integration include:

« Average and 99th percentile flow latency

« Packet loss rate

«  ECN mark frequency

«  Model inference latency

+ Routing decision time

These metrics were benchmarked against static rule-
based optimization schemes and conventional telemetry-
based monitoring. As described by Kadiyala, Chilukoori,
and Gangarapu, traditional approaches lack the dynamic
responsiveness needed for ultra-low-latency fabrics
(Kadiyala, Chilukoori, & Gangarapu, 2024).

Anomaly detection F1-score reached 94.7% and average
end-to-end latency dropped by 17.6% across all jobs
compared to baseline. These outcomes are aligned with the
goals of Al-powered observability highlighted in Bajpai’s
study on Al Ops and automated network diagnostics (Bajpai,
2023).

Observations and Insights

The experiment validates that integrating real-time, fine-
grained telemetry with intelligent Al agents significantly
enhances fabric performance and responsiveness in
demanding Al environments. The system mirrors industry
efforts such as Arista’s Etherlink Al platform, which aligns
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telemetry with congestion-aware Ethernet optimization
(Katragadda, 2021), and supports broader discussions around
software-defined Al-driven networking (Manzoor, Raza, &
Domzal, 2024; Zdrojewski, 2024).

Furthermore, results support findings from Umoga et
al. regarding Al's capability to streamline network decisions
in high-load scenarios (Umoga et al., 2024), and extend the
architectural paradigms introduced by Fayad, Cinkler,and Rak
in their survey on telemetry in next-gen fronthaul systems
(Fayad, Cinkler, & Rak, 2024).

REsuLTs AND ANALYSIS

This section evaluates the proposed Al-driven network
telemetry framework using a synthetic testbed emulating
large-scale Al workloads on high-speed interconnects (Ultra
Ethernet and InfiniBand). Key performance indicators (KPIs)
include telemetry granularity, congestion detection accuracy,
routing optimization latency, and system overhead. All
experiments were conducted on a simulation platform built
with programmable P4 switches, RDMA-capable NICs, and
real-time telemetry agents.

Telemetry Granularity and Responsiveness
We first assessed the framework’s capability to capture
granular telemetry metrics such as queue depths, packet
inter-arrival times, congestion notifications (ECN marks),
and flow-level latency. Compared to conventional polling-
based telemetry systems (e.g., SNMP, NetFlow), the proposed
architecture achieved sub-10ms update cycles for telemetry
reporting. This real-time visibility is critical for Al workloads
with tight synchronization requirements, such as distributed
deep learning.

The implementation of programmable data planes (using
P4) allowed packet-level metadata injection and on-the-fly
analytics, consistent with findings from Foroughi, Brockners,
and Rougier (2023). Figure 1 illustrates the comparison
between traditional and Al-integrated telemetry systems in
terms of response latency.

Table 4: Performance Comparison of Optimization

Strategies
Metric Baseline Al-Driven
Optimization ~ Optimization
Avg Flow Latency (ms) 245 2.02
99th Percentile Latency ~ 5.21 4.14
(ms)
Packet Loss (%) 1.32 0.87
ECN Mark Frequency (/ 48 29
min)
Inference Time (ms) N/A 16.5
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Telemetry Response Latency Comparison

501
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Fig. 2: The bar chart comparing telemetry response latency across different monitoring mechanisms. As shown, “INT + Al
Integration” yields the lowest average latency, highlighting its efficiency.

Al Model Performance for Anomaly and Congestion
Detection

Al models were trained on a synthesized dataset comprising
telemetry traces with injected anomalies, transient
congestion spikes, and coordinated traffic patterns. Using a
hybrid of deep autoencoders and recurrent neural networks,
the model achieved an anomaly detection accuracy of 96.3%
and afalse positive rate below 3.2%, which aligns with recent
approaches presented by Rzym, Masny, and Chotda (2024).

Table 5 presents the model performance compared to
conventional rule-based threshold monitoring. The model
demonstrated a substantial improvement in both sensitivity
and precision, particularly for microbursts and transient
routing anomalies.

These results reinforce previous work by Umoga et al.
(2024), who emphasized the efficacy of Al-driven pattern
recognition in adaptive network environments.

Network Optimization and Routing Adaptation
The Al telemetry loop also enabled real-time adjustments in
routing and flow scheduling. Using reinforcement learning
agents trained on fabric utilization and link-level congestion
statistics, flow rerouting reduced average path latency
by 22% and improved end-to-end throughput by 17%,
corroborating earlier architectural recommendations by
Katragadda (2021) and Girondi (2024).

The data shows that the Al system stabilized link
utilization across fabric links, reduced jitter, and eliminated
micro-congestion episodes, echoing the congestion-aware

24 |
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Table 5: Performance Comparison — Al vs. Rule-Based
Anomaly Detection:

Method Detection  False Detection
Accuracy  Positive  Latency
(%) Rate (%) (ms)
Rule-Based (ECN 72 18 54
Threshold)
Deep Autoencoder 88 9 3.2
RNN-LSTM 91 7 2.8
Combined Model 95 4 2.1
(Hybrid)

design principles advocated in Bajpai (2023) and Kadiyala,
Chilukoori, and Gangarapu (2024).

System Overhead and Scalability

A key concern in Al-integrated telemetry systems is data
collection and processing overhead. Our framework
maintained CPU utilization below 15% on telemetry nodes
and inference delay under 20ms for all tested models.
Compared to centralized network controllers, this edge-
distributed approach allowed scalable deployment with
minimal impact on workload execution, as also suggested
in Mozo et al. (2022) and Quan et al. (2022).
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These findings highlight the viability of deploying
real-time Al-based telemetry even in latency-sensitive
environments like InfiniBand-backed clusters, as also
discussed by Cugini et al. (2023) and Lyu (2022).

Security and Fault Detection Capabilities

As a byproduct of telemetry granularity, the system detected
fabric faults, rogue flows, and abnormal packet patterns
indicative of potential security breaches. The integration
of Al-based security analytics, inspired by the framework
proposed in Cugini et al. (2023), enabled early-stage threat
detection without intrusive packet inspection. This represents
a significant advancement over traditional firewall-centric
designs and supports the emerging trend of observability-
based security models (Zdrojewski, 2024).
The integration of Al with granular telemetry on high-
speed fabrics shows clear benefits:
«  Substantial reduction in network latency and congestion
duration
« Highanomaly detection accuracy with minimal overhead
«  Dynamic flow optimization aligned with real-time
congestion insights
« Scalable telemetry processing with low resource
consumption
These outcomes validate the conceptual motivations
described by Manzoor, Raza, and Domzal (2024), and
demonstrate practical feasibility within next-generation
interconnect ecosystems.

DiscussionN

The integration of advanced network telemetry with
Al-driven optimization models presents a transformative
opportunity for enhancing the performance, reliability, and
scalability of high-speed interconnects such as Ultra Ethernet
and InfiniBand. The findings of this study demonstrate
that granular, real-time telemetry data when effectively
harnessed by machine learning models, can proactively
mitigate congestion, detect anomalies before performance
degradation, and dynamically tune system parameters in
distributed Al workloads.

One of the most salient insights from our research is the
critical role of real-time telemetry granularity. Traditional
telemetry mechanisms, such as SNMP and NetFlow,
lack the temporal resolution and contextual awareness
required for Al-based optimization in high-performance
computing environments. This limitation is widely echoed
in recent studies, where researchers argue for dynamic and
programmable telemetry frameworks integrated with smart
data planes (Foroughi, Brockners, & Rougier, 2023; Quan et al.,
2022). Our architecture leverages P4-enabled data paths and
in-band telemetry to overcome these barriers, supporting
sub-second data feedback loops essential for low-latency
Al operations.

The integration of Al-driven optimization into network
telemetry pipelines also raises significant questions about
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scalability and data overhead. Ultra-low latency interconnects
require high-frequency data ingestion, often generating
telemetry at rates exceeding several GB/s. Without proper
filtration and prioritization, such volumes can overwhelm
telemetry processing units and Al models alike. Recent
literature highlights the need for edge-based summarization
and distributed Al inferencing to manage telemetry payloads
efficiently (Cugini et al., 2023; Mozo et al., 2022). Our proposed
telemetry preprocessing layer addresses this by using feature
selection techniques and sparse encoding, reducing model
input sizes by up to 65% while maintaining performance
accuracy.

The discussion must also address the implications of
hardware dependency and vendor lock-in. Many Al-optimized
telemetry pipelines are dependent on specific NICs, smart
switches, and telemetry-capable ASICs. For instance, the
Etherlink Al architecture by Arista is tightly coupled with their
proprietary hardware (Katragadda, 2021), while GPU-centric
networking approaches such as those proposed by Girondi
(2024) necessitate tight integration between NVIDIA-based
GPUs and InfiniBand fabrics. To mitigate this, open standards
such as gNMI/gNOI and P4Runtime must be advanced to
facilitate vendor-neutral Al-telemetry orchestration.

Anotherimportant dimension is security and observability
in Al-managed networks. As telemetry data is increasingly fed
into Al/ML models for automated control, risks arise around
data poisoning, model drift, and adversarial inference. Bajpai
(2023) and Umoga et al. (2024) both highlight how Al-driven
observability must be supplemented with adaptive security
layers that include anomaly verification and trust-based
model validation. Similarly, studies in optical and wireless
networks advocate combining Al with behavioral baselines
to detect malicious behavior (Cugini et al., 2023; Manzoor,
Raza, & Domzal, 2024).

A particularly promising direction is the use of digital
twins and self-adaptive learning agents. Mozo et al. (2022)
introduced B5GEMINI, a digital twin framework that
integrates real-time network telemetry into Al-driven
network emulators, enhancing predictive control. This aligns
with our architecture’s intent to simulate future network
states based on current telemetry streams and proactively
adjust routing policies or resource allocations.

Furthermore, the alignment with future 6G and post-
quantum infrastructure cannot be ignored. Fayad, Cinkler,
and Rak (2024) discuss how 6G optical fronthaul architectures
will rely heavily on autonomous telemetry systems that can
support extremely high frequencies and dynamic slicing.
Integrating these requirements with Al agents trained on
high-frequency telemetry will be a prerequisite for next-
generation network fabrics (Parasaram, 2021).

Finally, the human-in-the-loop dimension must be
acknowledged. While Al automation is crucial, intelligent
fallback and operator interpretability remain essential. Al
explainability in the context of network operations is still
underexplored, as noted by Zdrojewski (2024), and will be
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vital for broader adoption in enterprise environments (Lyu,
2022; Kadiyala, Chilukoori, & Gangarapu, 2024).

In summary, the proposed architecture offers tangible
benefits in optimizing high-performance networks using
Al-augmented telemetry. However, several open challenges
remain around scalability, interoperability, explainability, and
cybersecurity. Addressing these issues will be essential to fully
realize the potential of Al-driven networks in production-
grade environments and exascale computing infrastructures.

ConcLusioN AND FuTure WoRK

This paper has gone into the role that advanced network
telemetry can play in facilitating the optimization of next-
generation high-performance interconnects, in this case,
both Ultra Ethernet and InfiniBand, with the help of Al. With
increasingly sophisticated Al workloads requiring neuro-
computing at scale, desensitized to network performance,
and dynamic network management tactics, the traditional
strategies of static and reactive network management are
simply failing. In our data, we conclude that fine-grained,
real-time telemetry deployed in a proper combination
with intelligent models can meaningfully increase the
responsiveness and efficiency of Al workloads by proactively
avoiding congestion, on the one hand, reducing latency and
on the other hand, increasing throughput.

Among the main contributions made in this paper is
the architectural framework proposed where the in-band
network telemetry, programmable data planes, and adaptive
machine learning models are united into a deployed closed-
loop optimization system. Besides enhanced visibility of
the network, this architecture also establishes the basis
of proactive and autonomous decision-making in the
networks. Combination of telemetry and Al analytics allows
detecting anomalies in time, can predict congestions and
allocate resources efficiently, all of which are getting hard
to do without in Al optimized fabrics (Foroughi, Brockners,
& Rougier, 2023; Rzym, Masny, & Chotda, 2024).

Currentinnovations in the field of the industry, e.g., Arista
Etherlink accelerator platform and the GPU-centric-based
fabric density, already reflect the necessity of Al-aware
networking paying special attention to telemetry-capable
performance tuning and congestion avoidance technologies
and models (Katragadda, 2021; Girondi, 2024). A missing piece
is however the standardization of telemetry, end to end true
real-time responsiveness, and application of scalable Al
models in the varying network settings. The transition to the
Al-fueled network automation is a significant change in the
design, monitoring, and optimization of networks (Kadiyala,
Chilukoori, & Gangarapu, 2024; Bajpai, 2023).

Moreover, the increasing research about Al-capable
network observability-digital twins and programmable
P4-based telemetry-at-scale supports that it is both possible
and needed to take this step forward (Mozo et al., 2022; Cugini
et al., 2023). Our framework is a supplement to these efforts
which introduces a form of dynamic telemetry streaming
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data prioritization to only feed inference engines with high
value metrics and lower processing overhead and latency
(Umoga et al., 2024).

Regardless of these encouraging developments, there
are still a number of challenges in place. The large amount
and speed of telemetry information in quick- Tempo
fabrics requires new methods of data reduction and edge
computing and federated learning. Moreover, the presence
of heterogeneity among vendors and standards in the
capability of telemetry may undermine smooth integration,
in case of hybrid or multi-cloud (Fayad, Cinkler, & Rak, 2024;
Zdrojewski, 2024). Introducing Al to enterprise networks
should also strip the issue of explainability, transparency, and
trust in automated decision-making (Lyu, 2022).

Future research studies will attempt to find out how it is
possible to create interoperable telemetry protocols specific
to Al systems, possibly using existing industry work in INT,
P4Runtime, and gNMI. Also, the model robustness can be
enhanced by exploring the methods of online learning
and reinforcement learning as another way to achieve a
higher degree of adaptability in a dynamic traffic situation
(Quan et al., 2022; Manzoor, Raza, & Domzal, 2024). The Al-
enabled telemetry and software-defined networking have
this tremendous potential to create autonomous and self-
optimizing networks, capable of supporting not only Al but
also other arising areas such as 6G, edge computing, and
autonomous systems (Balasubramanian, n.d.).

To sum up, the introduction of new mDCN telemetry is
not just technical advancement but an era of a paradigm
shift in the network intelligence determined by Al-driven
optimization. It reimagines performance engineering in
Al-first spaces and preconditions the introduction of a
new age of self-governing infrastructure. To maximize the
potential of these kinds of systems, future study must focus
on scalability, interoperability, and trustworthiness of the
systems.
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