On Certain Triple Integral Relations Involving Elementary Functions

Mithilesh K. Mishra¹, Rajeev Shrivastava², Anamika Dubey³, Lakshmi N. Mishra⁴, SK Tiwari^{5*}

¹Department of Mathematics, Pt. S.N.S. Govt. P.G. College, Shahdol, Madhya Pradesh, India

²Department of Mathematics, Govt. I.G.H.S. Girls College, Shahdol Madhya Pradesh, India

³Department of Mathematical Sciences, A. P. S. University, Rewa Madhya Pradesh, India

⁴Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India

^{5*}Department of Mathematics, Lukhdhirji Engineering College, Morbi, Gujarat, India

ABSTRACT

The aim of this paper is to establish three triple integral relations involving elementary functions. A number of triple integrals can be deduced by proper specialization of the unknown functions f and g occurring in these relations. For the sake of illustration, one of our integral relations is applied to evaluate a general triple integral involving Asgar, Gautam and Goyal multivariable A- function.

Mathematics Subject Classification: 33C45, 33C60, 26D20

Keywords: Triple integral, Elementary function, Multivariable function, Gegenbauer polynomial, Bessel function. SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology (2022); DOI: 10.18090/samriddhi.v14i04.22

INTRODUCTION

Many authors have worked on the problem of obtaining integral relations involving higher classes of special functions of one and more variables.^[4,6] In this paper we derive three new integral relations associated with some elementary functions and illustrate how they can be applied to derive triple integrals which may be of interest.

Integral Relations

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (x^{2} + y^{2})^{-1/2} \exp\left[i\left(x^{2} + y^{2} + z^{2}\right)\left(\frac{x^{2} - y^{2}}{x^{2} + y^{2}}\right)\right].$$

$$\cos\left[2n \tan^{-1}\left(y/x\right)\right] f\left(x^{2} + y^{2} + z^{2}\right) \cdot g\left\{\tan^{-1}\left(\frac{x^{2} + y^{2}}{2}\right)\right\} dx dy dz$$

$$= \frac{\pi i n}{2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{n} (u^{2} + v^{2}) f\left(u^{2} + v^{2}\right) g\left\{\tan^{-1}\left(\frac{v}{u}\right)\right\} du dv$$
(2.1)

where n is any integer, positive or negative and the functions f and g are so constrained that the various integrals involved in (2.1) exist.

$$\begin{split} &\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (xy)^{\nu+1/2} (x^{2} + y^{2})^{-(\nu+1)} \exp\left[i (x^{2} + y^{2} + z^{2}) \left(\frac{x^{2} - y^{2}}{x^{2} + y^{2}}\right) \cos \varphi\right]. \\ &J_{\nu-1/2} \left[\frac{2xy}{x^{2} + y^{2}} (x^{2} + y^{2} + z^{2}) \sin \varphi\right] C_{n}^{\nu} \left(\frac{x^{2} - y^{2}}{x^{2} + y^{2}}\right) f(x^{2} + y^{2} + z^{2}) g\left[\tan^{-1} \left(\frac{x^{2} + y^{2}}{2}\right)\right] dx dy dz \\ &= 2^{-(\nu+1)} \sqrt{\pi i n} (\sin \varphi)^{\nu-1/2} C_{n}^{\nu} (\cos \varphi) \int_{0}^{\infty} \int_{0}^{\infty} (u^{2} + v^{2})^{-1/2} J_{\nu+n} (u^{2} + v^{2}). \\ &f (u^{2} + v^{2}) g \left[\tan^{-1} \left(\frac{\nu}{2}\right)\right] du dv \tag{2.2} \end{split}$$

provided that Re (v) >-1/2, n = 0,1, 2, . . . and f and g are so constrained that the various integrals involved in (2.2) exist.

Corresponding Author: Shivkant Tiwari, Department of Mathematics, Lukhdhirji Engineering College, Morbi, Gujarat, India, e-mail: shivkant.math@gmail.com

How to cite this article: Mishra, M.K., Shrivastava, R., Dubey, A., Mishra, L.N., Tiwari, S.K. (2022). On Certain Triple Integral Relations involving Elementary Functions. *SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology*, 14(4), 141-142.

Source of support: Nil Conflict of interest: None

valid under the same conditions as those stated for (2.2) above.

In (2.1), (2.2) and (2.3) $J_{\nu}(x)$ is the Bessel function of the first kind, $C_x^{\nu}(x)$ is the Gegenbauer polynomial and $Z_{\nu}(x)$ stands for any Bessel function of the first, second or third kind. Also

$$W = \left[\left(x^2 + y^2 + z^2 \right)^2 + t^2 - 2t \left(\frac{x^2 - y^2}{x^2 + y^2} \right) \left[\left(x^2 + y^2 + z^2 \right) \right]^{-1/2}$$
(2.4)

[©] The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Proof of (2.1): We have from^[7]

$$J_n(x) = \frac{1}{\pi i^n} \int_0^{\pi} exp \ (iz \cos \theta) \cos n\theta \ d\theta \tag{2.5}$$

In order to derive the integral relations (2.1), we replace x by $r^{2\theta} by 2\theta in$ (2.5), multiply both sides by rf $(r^{2}) g(\emptyset) dr d\emptyset$ and then integrate the resulting equation with respect to r and \emptyset over the intervals $(0,\infty)$ and $(0,\pi/2)$, respectively. we thus get

$$\frac{\pi i^n}{2} \int_0^\infty \int_0^{\pi/2} \{ J_n(\mathbf{r}^2) \ \mathbf{rf}(\mathbf{r}^2) \mathbf{g}(\emptyset) d\mathbf{r} \} d\emptyset$$
$$= \int_0^\infty \int_0^{\pi/2} \int_0^{\pi/2} \exp(ir^2 \cos 2\theta) \cos 2n\theta \ \frac{r \sin \theta}{r \sin \theta} \ \text{ff} \ r^2 \ () \mathbf{g}(\emptyset) d\mathbf{rd} \emptyset \ d\theta \qquad (2.6)$$

If we make the substitution $x = r \sin \phi \cos \theta$, $y = r \sin \phi \cos \theta$ and $z = r \cos \phi$ on right – hand side of (2.6) and set $u = r \cos \phi$, $v = r \sin \phi$ in left hand side, we are easily led to the integral relation (2.1).

To prove the integral relations (2.3) and (2.4), we start with the known integrals^[3] and proceed on the lines similar to those mentioned in the proof of (2.1).

Useful Deduction

The function g appearing in our integral (2.1) (2.2) and (2.3) may be chosen appropriately to derive various triple integrals. For example, if in (2.1), we get

$$g(t) = \cos 2(\mu t) (\sin t)^{\vartheta}$$
(3.1)

and simplify the right – hand side of the resulting equation by means of a known integral relation,^[6] we arrive at the following result:

$$\begin{split} &\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} x^{2} + y^{2})^{(\nu-1)/2} (x^{2} + y^{2} + z^{2})^{\nu/2} &\exp[i(x^{2} + y^{2} + z^{2}) \\ &\left(\frac{x^{2} - y^{2}}{x^{2} + y^{2}}\right)] \cos\left[2n\left(\tan^{-1}\frac{y}{x}\right)\cos\left[2\mu\left\{\tan^{-1}\left(\frac{x^{2} + y^{2}}{2}\right)\right\}\right] f(x^{2} + y^{2} + z^{2}) dx \, dy \, dz \\ &= \frac{\sqrt{\pi} i^{n} \Gamma\left(\frac{1}{2} \pm \mu\right) \Gamma\left(\frac{1+\nu}{2}\right) \Gamma(1+\nu/2)}{8 \Gamma\left(1+\nu/2 \pm \mu\right)} \int_{0}^{\infty} f(t) J_{n}(t) dt \end{split}$$
(3.2)

Re (v) > 0, n is an integer, positive or negative and f is so chosen that the integrals on both both sides of (3.2) exist. Now in (3.2), we get

 $\underline{f}\left(t\right)=t^{\lambda-1}\;\mathrm{H}\left[z_{1}t^{\rho_{1}},\ldots,z_{r}t^{\rho_{r}}\right]$

where

$$\mathbf{A}\left[z_{1}, \dots, z_{r}\right] = A_{p,q; p_{1},q_{1}, \dots, p_{r},q_{r}}^{m,m; m_{1},m_{1}, \dots, m_{r},n_{r}} \begin{bmatrix} z_{1} \\ z_{r} \\ (b_{j}; B_{j}^{'}, \dots, A_{j}^{(r)})_{1,p}; (c_{j}^{'}, C_{j}^{'})_{1,p_{1}, \dots, (c_{j}^{(r)}), C_{j}^{(r)})_{1,p_{r}}} \\ (b_{j}; B_{j}^{'}, \dots, B_{j}^{(r)})_{1,q}; (d_{j}^{'}; D_{j}^{'})_{1,q_{1}; \dots, (d_{j}^{(r)}), D_{j}^{(r)})_{1,q_{r}}} \end{bmatrix}$$

is a special case of the multivariable A-function due to Asgar, Gautam and Goyal.^[1,2]

Evaluating the resulting integral with the help of a known integral,^[5] we arrive at the following interesting triple integral which is believed to be new:

$$\begin{split} \int_0^\infty & \int_0^\infty x^2 + y^2)^{\lambda - (\nu + 2)/2} (x^2 + y^2)^{(\nu - 1)/2} & \exp\left[i (x^2 + y^2 + z^2) \left(\frac{x^2 - y^2}{x^2 + y^2}\right)\right] \\ & \cos\left[2n \left(\tan^{-1}\frac{y}{x}\right)\right] \cos\left\{2\mu(tan^{-1}\left(\frac{x^2 + y^2}{2}\right)\right\}. \\ & A\left[Z_1(x^2 + y^2 + z^2)^{\rho_1}, ..., Z_r(x^2 + y^2 + z^2)^{\rho_r} dx \, \underline{dy} \, dz \right. \\ & = \frac{2^{\lambda - 4}\sqrt{\pi} \, i^n \, \Gamma\left(\frac{1}{2} \pm \mu\right) \Gamma\left(\frac{1 + \nu}{2}\right) \Gamma(1 + \nu/2)}{\Gamma(1 + \nu/2 \pm \mu)} \, . \end{split}$$

 $A_{P+2,Q;P_{1}Q_{1};...;P_{r}Q_{r}}^{M,N;M_{1}N_{1};...;M_{r},N_{r}} \begin{bmatrix} Z_{12}^{\rho_{1}} \\ Z_{7}^{2\rho_{r}} \end{bmatrix} \begin{pmatrix} \left(\pm \frac{n}{2} - \frac{\lambda}{2}; \frac{\rho_{r}}{2^{-}-\gamma} \right) (a_{j};a_{j};...,a_{j}^{(r)})_{1,P}; (c_{j}',\gamma_{j}^{(t)})_{1,P_{1};...;(c_{j}^{(r)},\gamma_{j}^{(r)})_{1,P_{r}} \\ (b_{j};\beta_{j}'...,\beta_{j}^{(r)})_{1,Q}; (d_{j};\beta_{j}')_{1,Q_{1};...;(d_{j}^{(r)},\delta_{j}^{(r)})_{1,Q_{r}} \end{bmatrix} (3.3)$

provided that Re (v) > 0, $\rho_i > 0$ (i = 1, ..., r), n is an integer, positive or negative,

$$\begin{aligned} \operatorname{Re}\left(\lambda\right) + \sum_{i=1}^{r} [\rho_{i} \, \max_{1 \leq j \leq m_{i}}^{\min} \, \operatorname{Re}\left(d_{j}^{(i)} / \delta_{j}^{(i)}\right)] + \mathbf{n} > 0, \\ \operatorname{Re}\left(\lambda\right) + \sum_{i=1}^{r} [\rho_{i} \, \max_{1 \leq j \leq n_{i}}^{\max} \, \operatorname{Re}\left(c_{j}^{(i)} / \gamma_{j}^{(i)}\right)] - \frac{3}{2} < 0 \\ \eta_{i} = -\sum_{j=1}^{P} \alpha_{j}^{(i)} - \sum_{j=1}^{Q} \beta_{j}^{(i)} + \sum_{j=1}^{N_{i}} \gamma_{j}^{(i)} - \sum_{j=n_{i}+1}^{P_{i}} \gamma_{j}^{(i)} + \sum_{j=1}^{M_{i}} \delta_{j}^{(i)} - \sum_{j=m_{i}+1}^{Q_{i}} \delta_{j}^{(i)} > 0 \end{aligned}$$

and $|\arg(z_k)| < \frac{1}{2}\eta_i \pi, (i = 1, ..., r).$

The triple integral (3.3) is quite general in character due to general nature of the multivariable A- function involved therein. Thus, by appropriately reducing this multivariable A- function in terms of simpler special functions, one can easily obtain a considerably large number of triple integrals to mathematical analysis and applied mathematicians.

REFERENCES

- A. S. Asgar and B. P. Gautam (1980). The A-function, Revista Mathematical, Tucuman.
- [2] A.S. Asgar, B.P. Gautam and A.N.Goyal (1986) .On the multivariable A – function, Vijnana Parishad Anusandhan Patrika 29, 4, 67-81.
- [3] Erde'lyi, A. (1953). Higher Transcendental Functions. Vol.II, McGraw Hill, New York.
- [4] Srivastava, H.M.and Panda, R. (1976). Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math., 265 – 274.
- [5] Srivastava, H.M., Goyal S.P. and Agrawal R.K. (1981). Some multiple integral relations for the H- function of several variables, Bull. Inst. Math. Acad. Sinica, 9, 261-227.
- [6] Srivastava, H.M., K.C. Gupta and S.P. Goyal (1982). The Hfunctions of One and two variables with Applications. South Asian Publishers, New Delhi and Madras.
- [7] Whittakar, E.T. and Watson, G.N. (1969). A Course of Modern Analysis, Fourth ed., Cambridge University Press, Cambridge.