
Ab s t r Ac t
The linear stability of the shear flow of an incompressible, viscous, electrically conducting fluid permeated by the sheared 
magnetic field is investigated. An unbounded two-layer model consisting of different viscosity and magnetic diffusivity 
fluids with different velocity shear and magnetic shears is examined for two-dimensional disturbances. An analytical study 
using the short wavelength approximation shows that the configuration is always unstable for different diffusivities and 
for different shears. When the magnetic field does not vanish on the interface, it may stabilize or destabilize the system 
depending on the values of certain parameters. 
Keywords: Stability, Shear flow, Electrically conducting fluid, Unbounded two-layer model magnetic shear, Short 
wavelength approximation.
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In t r o d u c t I o n 
When a fluid is driven away from thermal and mechanical 
equilibrium, it will undergo a sequence of instabilities, each 
leading to a change in spatial or temporal structure. The 
transition from laminar to turbulent flow begins with the 
instability of flow. The stability of shear flows in the presence 
of applied magnetic field is important in geophysics and 
astrophysics. This study is based on the previous investigations 
by Drazin & Reidl[3], Hooper & Boyd[4], Yih[6]. It was shown by Yih 
[6] that instability can occur when two co-flowing fluids have 
different viscosities. Hooper & Boyd [4] considered the stability 
analysis of two unbounded linear viscous shear flows with 
different shears, and showed that the configuration is unstable 
when the fluids are of different viscosities and shears. In the 
presence of a discontinuity in the electrical conductivity, a 
sheared magnetic field can give rise to a new instability. For two 
superimposed fluids of different electrical conductivities, it was 
shown by  Sneyd[5], Davidson & Lindsay[2], and Bhattacharya 
& Gupta[1] configuration is unstable when there is continuous 
or discontinuous variation in electrical conductivity. In this 
study, we considered the combined effect of velocity and 
magnetic shears on the stability of the interface formed by 
two unbounded shear flows of different viscosity and electrical 
conductivities and have determined the criteria for the growth 
rate, using a regular perturbation analysis.

MAt h e M At I c A l Fo r M u l At I o n
We consider the two co-flowing viscous unbounded 
electrically conducting shear flows separated by the interface 

at y = 0  in the presence of sheared magnetic field as shown 
in Figure 1. We assume both the fluids are incompressible. 
The governing equations in each fluid are
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Figure 1: A sketch of the physical problem.
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where 
2HmP p

2

µ
= +  is the total pressure. 0µ  is the magnetic 

permeability of the fluid. ρ , ν and λ  are the density, 

kinematic viscosity and magnetic diffusivity of the fluid,  q 

is the fluid velocity, B


is the magnetic field. 

I n  t h e  u n p e r t u r b e d  s t a t e ,  ( )q (U y    y , 0)σ ′= =


,

( )B B s y , 00 ′= +


. P P0= , where σ , s, 0B , P0  are constants, 
σ and s are respectively the shear intensity of the mean 
flow and the magnetic shear intensity. We now consider a 
two-dimensional perturbation given by ( )q  y u , vσ ′ ′ ′= +


,

P P P0 ′= + 




 ′′+′+= yb,xby s0BB


. In the unperturbed state, 

the balance of normal stress and continuity of the tangential 
component of the magnetic field required 

( ) ( ) ( ) ( )B B , P P0 0 0 01 2 1 2= =
.    (5)

Whereas the continuity of the tangential component of 
the electric field and velocity field require

1 1 2 2s sλ λ= , 1 2 21
ì ó ì ó=     (6)

where ,1 2s s  are magnetic shears, 21 ,σσ  are velocity 
shears,

21 , µµ are viscous diffusivities and 21 , λλ are 
magnetic diffusivities in fluid 1 and 2, respectively.

Let ( )y x , tη′ ′ ′ ′=  be the equation of the interface 
between the two fluids in the perturbed state. The kinematic 
boundary condition at the interface, after linearizing and 
assuming normal modes as before, gives

v i  cα η′ ′ ′ ′= −  at 0y =′ .    (7)

We now impose the requirement of continuity of the 
tangential and normal components of velocity, shear and 
normal stress, tangential and normal components of the 
magnetic field and tangential component of the electrical 
field at the perturbed interface. We linearize and assume 
normal modes each of the dependent variables with  

( x′, t′ ) - dependence in the form ( )exp i x c tα′ ′ ′ ′−   , We 
now introduce a stream function ( )yψ ′  and ( )yφ ′  for the 
magnetic field such that

d u
dy
ψ′ =
′ , 

d v
d x
ψ′ = −
′ ,

d bx dy
φ′ =
′ , 

dby dx
φ′ = −
′    (8)

The linearized equations by eliminating pressure reduce 
to
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( ) ( )i   y c i B s y  0α σ φ α ψ′ ′ ′ ′ ′− = +
 

2d  2-  2dy
λ α φ
 
 ′+
 ′    (10)

The requirement that the perturbations vanish as 
∞±→′y , together, constitute the eigenvalue problem 

governing linear stability.

The length scale L and time scale T are defined as 
1
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The rescaled coordinates and a rescaled phase speed 

are defined by 
( ) ( )x, y  X,Yα=

 , 
C   C1 α=

   (12)
Substituting the above into equations (8) and (9) and 

writing the equations separately for the two fluids, we have 
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At 0y =′ , it follows that 
  1 2ψ ψ=

 and 
  1 2φ φ=
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Where M and S are the magnetic and surface tension 

parameters. Further
01ψ →

, 
01ϕ →

 as ∞→y ;
02ψ →

, 
02ϕ →

 as −∞→y .          (18)

A re g u l A r Pe r t u r b At I o n  An A lys I s  
F o r sh o r t WAv e l e n g t h
From the equations (13) – (16)   and the boundary conditions it 

is evident that 
1

2α can be used as an expansion parameter for 
carrying out a regular perturbation analysis for disturbances 
of short wavelength. Accordingly, we assume the expansions.
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We substitute from (19) into (13)-(16) and (17), to obtain the 
zeroth order solutions of the problem

( ) 0y0a =
,

( ) 0y0b =
,

( ) 0Ky0g =
,

( ) 0Ky0d =
, (20)

where 0K  is a non-zero constant. We find 

We find that 00C =        (21)

T h e  f i r s t- o r d e r  p e r t u r b a t i o n  s o l u t i o n s  a r e

( ) ( )
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Using the boundary conditions, we determine the 

eigenvalue C1 , given by ( )( ( )i m 2C 2  M 1 11 4P 1 m2
α χ χ = − + − − + 
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It can  be seen that at ( )-2 O α  the configuration 
will be stable or unstable depending on whether

( ) ( )2 3 32  M 1 1 2 S 2 P  S 2α χ χ α α − + − − −


21 m m+2 P 1 or 02 1 m r

 −   − < >   +        (27)
This shows that if S = 0, M = 0, 0ν =  configuration is always 

unstable provided 1χ ≠ , when the magnetic field does not 

vanish. If M 0≠  it may have a stabilizing or  destabilizing 
effect depending on the sign of M. The dimensional 
growth rate, correct to first order in 1

2α  is given by  
1

2 2s 1 i m2 C 2 4P 1 m0 2 2
α

µ ρ α

 
  =    +  

 
( ) ( )2 32   M 1 1 2 S α χ χ α − + − −

  
21 m m 32 P 1 2 P  S 2 21 m r

α
 −   + − −   +                (28)

From equation (28) it can be seen that the growth rate 
vanishes when 02s = . The condition for stability or instability 
given by (26) holds, provided the magnetic shears 1s  and 2s  
are positive. 

re s u lts A n d dI s c u s s I o n
It is shown that an unbounded configuration of viscous 
electrically conducting parallel flows permeated by a sheared 
magnetic field is always unstable for short-wavelength 
disturbances (in the absence of surface tension and viscosity) 
if the magnetic field vanishes at the interface and the 
magnetic diffusivities of the two fluids are different. 
The graphical representations of growth rate Im(C1) against 
the values of α for various values of the other parameters 
are shown in Figures 2-4. Figure 2 shows that the maximum 
growth rate occurs for shorter wavelengths as χ  it increases. 
Figure 3 shows the growth rates for different magnetic 
Prandtl numbers P2  with r = 1, m = 2, χ = 2, S = 0.001 and  M 
= 0 . Figure 4 shows the growth rates for different viscosity 
ratios m  for m = 0.1 and m = 10 with r = 1, χ = 2, S = 0.001, 
M = 0 and  P2 = 0.025. We find the maximum growth rate for 

(1)Oα =  and is in agreement with equation (25) for short 
wavelengths. Figures 3 and 4 show that the largest growth 
rate shifts to longer wavelengths with an increase in P2 or a 
decrease in m.

re F e r e n c e s
[1] Bhattacharya and Gupta, Instability due to a discontinuity in 

magnetic diffusivity in the presence of magnetic shear, J. Fluid 
Mech. 509(2004) 125-144.

Figure 2: Growth rate Im (C1) vs. wavenumber α for 
different values of magnetic diffusivity ratios χ with r = 1, m 

= 2, S = 0 , M = 0 and  P2 = 0.025.

Figure 3: Growth rate Im (C1) vs. wavenumber α for 
different magnetic Prandtl numbers P2  with   r = 1, m = 2, χ 

= 2, S = 0.001 and  M = 0

Figure 4: Growth rate Im (C1) vs. wavenumber α for 
different viscosity ratios m with r = 1, χ = 2, S = 0.001 and  

M = 0 and P2 = 0.025.



The Stability of Shear Flow of Viscous Electrically Conducting Fluid

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 15, Issue 2 (2023) 209

[2] Davidson,P. A.  and Lindsay, R.. Stability of interfacial waves in 
aaluminium reduction cells, J. aluminium reduction cells, J. Fluid 
Mech. 362(1998) 273-295.

[3] Drazin, P.G. and Reid W. H., Hydrodynamic Stability. Cambridge 
University Press., 1981.

[4] Hooper A. P. and Boyd, W.G.C., Shear-flow instability at the 

interface between two viscous fluids, J. Fluid Mech. 128(1983) 
507-528.

[5] Sneyd, A.D, Stability of fluid layers carrying a normal electric 
current, J. Fluid Mech. 156(1985), 223-236.

[6] Yih C. S., Instability due to viscosity stratification J. Fluid Mech. 
27(1967), 337-352.


