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I N T R O D U C T I O N

Various researchers in past worked on the Caputo
derivatives in order to develop the new mathematical
models for different geometries to analyses the effects
of temperature on the functionally graded plate. By
applying pertuburation method properties of the
material was analysed at various temperature [1] .
Popovych [2,3], Popovych and Makhorkin [4] and
Kushnir and Popovych. [5]  studied the thermal affect
in various bodies due to thermosensitivity. Further
the study extended to analyses temperature and
stress effect on the ceramic material for on-dimensional
geometry [6]. Povstenko [7]  studied quasi-static
approach under uncoupled thermoelasticity when the
material subjected to the conductive heat [7].
Povstenko [8], Kushnir and Popovych [9] and Popovych
et. al. [10] investigated stress functions by considering
Caputo type heat equation of time fraction order by
using Integral transformation for an infinite body.
Povstenko [11] Applied integral transformation in order
to examine the time fractional diffusion equation for
infinite cylinder. Povstenko [12-13, 14] determined
solution in cylindrical coordinates of a non-axisymmetric
problem under time-fractional wave equation with a
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A B S T R AC T

The proposed study emphasis on to examine the temperature and stress distribution on functionally graded
thermosensitive rectangular plate. Caputo derivative of order 0 to 2 is applied to analyses the rectangular plate
when subjected to the convection heat.

Present article illustrated the methodology and the mathematical model opt for framing the expression to address
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heat source in an infinite medium by using Hankel and
Fourier transform. Kedar et al. [15, 16-17] determined
thermal behavior in nonhomogeneous plate with
material dependent properties and studied its
deformation analysis.

The hollow cylinder with uniform temperature
were analyzed using integral transform [18]. The study
evident of new equation for displacement stress
function. Kumar and Kumar [19] did thermoelastic
analysis of a beam with diffusion by Eigen value
approach. the Axisymmetric problem of 2-D was
studied to obtain the temperature and stresses on
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cylinder [20] The integral transformation applied to
investigate heat transfer behavior (time fractional) for
a non-homogeneous thick hollow cylinder subjected
to heat [21]. Lamba and Deshmukh [22] studied the
problem with hygrothermal effect in a finite solid
cylinder and successfully determined its thermal
stress and temperature function. Kamdi and Kumar
[23] discussed behaviour of stress and temperature
variation in a fin in theory of fractional thermoelasticity.
Thakre and Warbhe [24-25] analyzed deflection and
temperature distribution effect on material (functionally
graded) with heat source using fractional order theory.

The study focused on determination of distribution
of temperature and stress in case of temperature
dependent functionally graded fractional order
thermosensitive rectangular plate by using modified
integral transformation technique. For the purpose
of numerical analysis a ceramic- based functionally
graded material is considered and the results of
temperature distribution and associated stresses are
presented graphically for both homogeneous and
nonhomogeneous case.

Caputo Fractional Derivative

The Caputo derivative for the function )(tG is definedd
as;
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The Laplace transform of derivative rule defined in
equation (1) is given as
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Where

s  is transform parameter

n is positive integer..

GOVERNING EQUATION OF TEMPERATURE

DISTRIBUTION FUNCTION WITH BOUNDARIES

The heat equation for a rectangular plate in frame of

time fractional order derivative 20   with

certain boundaries is as
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In above equations,  tyx ,,  is stands for distribution

of temperature at any time t , 0 is the distribution of

temperature in surrounding medium, further a

impulsive heat with 1Q  strength is defined ass

  )(01 tyyQ   at the point  0,0 yyx   and

 0, yyax  , next ),( xk  is thermal conductivity and

),( xc  is specific heat capacity of the material plate,

furthermore 1 , 2   refers here for the coefficients of

heat transfer.
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Displacement expression for thermal stresses

The rectangular coordinate system under no body
forces relation between strain displacement components
as:
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Equations of equilibrium written as in [26]
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Here, the component of displacement along plane

x-axis is xu  and along plane y-axis is yu .

Next,  Equation (13) to equation (15) shows the plane
stress and Equation (16) to equation (18) representing
the plane strain
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Here,  ,xG  stands for shear elasticity modulus,

 ,xa  refers for thermal linear expansion coefficientt

and  ,xv  is Poisson’s ratio.

A plane stress field equation (19) is obtained by
placing the equation (10) and (13) to (15) in (11) and
(12);
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[10, 12, 33]
Similarly, the plane strain field equation (20) obtained
by using (10) and (16) to (18) in (11) and (12);
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[1, 7, 10, 35, 36]

Next, φ is Goodier’s displacement function, Õ and ψ
are the Boussinesq Harmonic functions used to express
the solutions of (7) and (8) as
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Further, φ, Õ and ψ satisfies the following conditions
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On substituting (21) and (22) in (16) to (20), the
corresponding resultant stress function in plane strain
are obtained as
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The boundaries for the condition of traction-free
surface is

axxatxx  &0;0 (30)[2]

ayyatyy  &0;0 (31)[2]

S O LU T I O N S

Heat conduction problem

The integral transform and its inverse is used to
examine the heat transfer with boundary conditions

ax 0 for the function ),,( tyxf defined using

equation [27] as


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),,(),(),,(  (32)[1]
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n

nn tyfxStyxf  (33)

the kernel of the transformation is

 xxLxS nnnn  sincos),( 11  (34)

here
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Where, the non-negative roots of the transcendental

equation is n ;
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na (36)

The integral transform and its inversion formula with

respect to by 0 for the function ),,( tyf n
defined by following  equation [27] as;
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the kernel of the transformation is
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Where here, m denotes the non-negative roots of

the transcendental equation
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On using Popovych et al. [2, 4, 9, 10, 13, 3] the
Kirchhoff’s variable is introduced as
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By using (42), equation (3) to (9) can be rewritten as
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(49)[30]
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Where 000 /  Ck , 0k  is reference thermal

conductive, 0C  calorific capacity, and 0  is density

of material.

Employing Laplace transform to the equation (43)
and using initial boundaries (48)-(49), we obtain
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Employing the integral transform defined in equation
(32) on (50) with respect to variable x;
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Next, applying the transformation defined in (37) to
(46) w. r. t. variable y;
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Further, using inversion of Laplace transform to (58)
we get
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Where,  .E  represents the Mittag-Leffler-type function.

Next, using the inversion formula defined in Eq. (38)
on (50), we obtain
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Finally, employing inversion formula defined in (33)
to (60), we obtain expression for temperature distribution
as
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Next, by substituting the inverse  variable transformation
from θ to T as in [6], the required expression for
temperature distribution is
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Where

     cocomom kkkxfxu 

  xxfm 1 for 0

Thermoelastic Equations
The solution of thermoelastic Goodier potential
displacement function obtained by using equation
(53) in (23)
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where

     ySxSyxg mn ,,,1  

   
    
      2

33

2

,,

)()(2
,,

xuySxS

xuxgxgxu
ySyxg

mn

m










     xSxuxSxuxg nn ,)(,)(3  

Expressions for Boussinesq harmonic functions Õ and
ø satisfying equation (23) is assumed as

 
 

    yy
xD

xB
tp

mm

m n nn

nn








cossin
cos

sin
)sinh(

1 1
1













 






 (64)

Where nB , nD are constants.s.

Using the values of ,  ,   from om (63) and (64) in

(21) to (22), we obtain
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Here, G is SME-shear modulus elasticity,  is CLTE--

linear thermal coefficient, and v is PR- Poisson ratio

in case Functionally Graded Materials dependent on

x  are expressed as SME, CLTE, and PR of material ass

mG , m , mv  and case of ceramics cG , c , cv  with

the volume-fractions of material  xf m  and ceramics,

 xf m1 as [6]
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(69)[6]

By using Noda [1], we gave following exponential law:

   tGTG jj 10 exp 

   tT jj 20 exp  

   tvTv jj 20 exp 

mj  ;c 01  02  (70)

Here, 0jG , 0ja , and 0jv are the reference values of

SME, CLTE, and PR, respectively.

The Equations (63) , (64), (67) to (70) in (24) to (29)
gives the plane stress and strain field along the
rectangular plate. The values of corresponding stresses

nB  and nD may be found by using the traction-freeee
conditions given by Eq. (30) and (31) in the stresses
(24) to (29). Here the resultant stresses and the
constants nB  and nD are found using computerer
simulation.

Numerical Calculations

For the purpose of numerical analysis alumina is set
as the ceramic and nickel as metal to form functionally
graded metal-ceramic base.

Where non-dimensional variables following [15] are
as:
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The dimensions used during the numerical calculation
are as:

a= 1 cm, b = 2 cm, T0 = 3200K

The other related values are as taken:

For Alumina (Ceramic):-

Thermal

conductivity cmKWk /282.0 ,

thermal diffusivity

ki= 0.083 10-6 cm²/s, Shear modulus G= 8.8 106

N/cm² Coefficient of linear thermal expansion

Poisson’s ratio 23.0
For Nickel (Metal):

Thermal

conductivity cmKWk /901.0 ,
thermal diffusivity

scmk i /10223.0 26 , Shear modulus
26 /102.7 cmNG   Coefficient of linear thermal

expansion K/1014 6 ,  Poisson’s ratio 31.0

A N A LYS I S  O F  N U M E R I C A L  R E S U LT S

For numerical computation of dimensionless
temperature distribution and thermal stresses for
different values of fractional-order parameter

2,5.1,1,5.0   (depicting weak,
normal and strong conductivity) MATEMATICA software
is used.

Figure 1(a): Temperature distribution along x axis in
homogeneous plate for different fractional parameter

Figure 1(b): Temperature distribution along x axis in
nonhomogeneous plate for different fractional

parameter

Figure 1(a) and 1(b) represents the variations of *
(dimensionless temperature) along x axis in both the

homogeneous and non-homogeneous cases for

different values of fractional order parameter

5.0 , 1 , 5.1 and 2 on fixing 6.0* y  .

Variation of temperature is noted positive initially and

after it decrease till centre then after it suddenly

increases towards outer part for homogeneous case.

But in nonhomogeneous plate case distribution

initially decreases till 4.0* x and then after increasess

towards outer end. Further speed of propagation of

thermal signals are varying directly proportional to

the different values of fractional-order parameter .

Furthermore, a non-uniform flow of temperature due

to different fractional parameter can be seen clearly

in both the cases, Hence distribution with different

fractional parameter affects the design of various solid

structures which is used in engineering and science.
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Figure 2(a): Distribution of *
xx  (plane stress field)

along x axis in homogeneous plate for differentt
fractional parameters

Figure 2(c): Variation of *
xy  (plane stress field) along

x axis in homogeneous plate for different fractional
parameter

Figure 2(b): Distribution of *
yy  (plane stress field)

along x axis in homogeneous plate for differentt
fractional parameter

Figure 2(a), 2(b) and 2(c) represents the variations of
dimensionless plane stress field along x axis in the
homogeneous case for different values of fractional
order parameters 5.0 , 1 , 5.1 and 2 on

fixing 6.0* y  . It is seen that *
xx goes on increasing

towards outer end and reaches at peak near the
centre and converges to zero at the end. Stress

distribution *
yy found positive at both the initial and

outer end while *
xy decreases till centre of plate and

thereafter it starts increasing towards outer end.
Further it is noted that fractional parameters affects
the stress variations which may be applicable for
design of more stress bearing structures.

Figure 3(a): Variation of *
xx  (plane stress field) along

x axis in nonhomogeneous plate for different fractional
parameters

Figure 3(b): Variation of 
*

yy  (plane stress field) along

x axis in nonhomogeneous plate for different fractional
parameter
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Figure 3(c): Variation of 
*

xy  (plane stress field) along

x axis in nonhomogeneous plate for different fractional
parameter

Figure 3(a), 3(b) and 3(c) represents the variations of
dimensionless plane stress field along x axis in the
nonhomogeneous case for different values of
fractional order parameters 5.0 , 1 , 5.1

and 2 on fixing 6.0* y . It is seen that initially *
xx goesoes

on decreasing towards outer end and reaches
negative near the centre and starts increasing

thereafter. Stress distributions *
xy and *

yy found

decreasing initially and becomes sinusoidal in nature
towards outer end.

Figure 4(a): Dimensionless stress distribution
(plane strain field) along x axis in homogeneous platee

for different fractional parameter

Figure 4(b): Dimensionless stress distribution
(plane strain field) along x axis in nonhomogeneous

plate for different fractional parameter

Figure 4(a) and 4(b) represents the variations of
dimensionless plane strain field along x axis in the
homogeneous case for different values of fractional
order parameters. It is seen that all the stress
components are tensile throughout the plate.

Figure 5(a): Dimensionless stress distribution
(plane strain field) along x axis in nonhomogeneous

plate for different fractional parameter

Figure 5(b): Plane strain distribution on rectangular
plate(non-homogeneous)
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Figure 5(a) and 5(b) represents the variations of
dimensionless plane strain field along x axis in the
nonhomogeneous case for different values of
fractional order parameters. It is seen that *

xx is
compressive near outer end for some values of
fractional parameter while the stress component

*
yy  are tensile over the plate.

C O N C LU S I O N

Present study adopted the Caputo methodology to
generate the expression for analyzing the heat
conduction problem related to ceramic based material
for temperature and stress distribution along the
rectangular plate. The results displays that the
temperature distribution is found to be positive at
both ends of the plate in homogeneous condition and
negative in non-homogeneous conditions. The study
indicates that fractional parameter produces more
impact on the temperature distribution, plane stress
and strain field. The factional parameters also have
an effect on the material heat conduction ability.

The present article is very useful for design and
construction of new materials and applicable for
realistic situations
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