
Ab s t r Ac t
In the present article, we perceive a new kind of mass function to solve Einstein's field equation and generate spherically 
symmetric models of ultra-dense stellar objects. By assuming a suitable form of mass function, we study the out-march of 
all physical parameters within the anisotropic fluid spheres. We find that the radial and transverse pressures, the density of 
matter, redshift, mass function are regular and well behaved inside the compact fluid spheres. Our model is stable under 
the action of hydrostatic, anisotropic, and gravitational forces and the causality condition is well satisfied inside the fluid 
spheres. The graphical representation of the adiabatic index reconfirms the stability of our model and the compactness 
parameter lies within the Buchdahl limit. The newly obtained solution is free from any singularity and satisfies all energy 
conditions, i.e., strong energy condition, weak energy condition, and null energy condition. We construct models of compact 
stars 4U 1820-30 and SAX J 1808-4-3658(SS2) and explore several physical features of the models.
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In t r o d u c t I o n

Einstein's gravity has produced very cogent and authentic 
outcomes about the compact stellar composition 

and their geometrical features. The field equations and 
their exact solutions have provided a solid framework for 
developing models of dense stellar objects. It’s not a trivial 
task to find new exact solutions to field equations due to 
their highly complex and nonlinear character. Researchers 
have investigated many exact solutions by implementing 
different mathematical tactics and assumptions, keeping 
in view the physical compatibility of the solutions. Some 
investigations focus on the equation of state of the interior 
matter distribution, whereas some authors have investigated 
compact star models by making suitable assumptions on 
metric potentials, mostly based on embedded class one 
condition. An elegant and effective approach to finding out 
the new solutions of Einstein's field equations is to assume 
an appropriate mass function, and then trace out other 
essential ingredients to define the whole anatomy of the 
dense stars. Several interesting facts regarding compact 
stars have been explored by implementing the mass function 
idea. However, this approach has been rarely used due to the 
complexity of assuming the mass function's appropriate form. 
A particular type of mass function proposed by Matese and 
Whitman[1] has been used by several authors to investigate 
compact star models under different perspectives. Mak and 
Herko[2] used this mass function to construct anisotropic fluid 

configurations in the relativistic framework. Maharaj and 
Thirukkanesh[3] developed strange star models centered on 
the Matese and Whitman mass distribution. Schwarzschild[4] 
and Tolman[5] performed fundamental and pioneering 
research by working out initial solutions of Einstein's field 
equations, which revolutionized the investigations accruing 
to spherically symmetric stellar objects. Oppenheimer and 
Volkoff[6] developed simple neutron star models with the 
conception of Fermi gas, revealing many intriguing facts 
about dense astrophysical structures. In this direction, 
Buchdahl[7] made a significant contribution by establishing 
the upper mass to radius ratio limit for stable and spherically 
symmetric configurations. Initial investigations were mainly 
based on perfect fluid concepts, i.e., radial and transverse 
pressure possessed identical values. After that, advancements 
in theoretical physics and experimental techniques 
necessitated the presence of anisotropy in the interior of 
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compact stellar objects. Intense magnetic field[8] Phase 
transition,[9] pion condensation[10] are some of the major 
factors causing anisotropy in the compact stars. Anisotropic 
structures differ in many features from their parental perfect 
fluid configurations. The redshift, stability, mass factor are 
some of the attributes in which the changes are inevitable 
due to the presence of anisotropy. Chan et al.[11] established 
that the local anisotropy has a great effect on the stability 
of stellar structures. Ruderman[12] investigated that pressure 
anisotropy plays a significant role when density in the 
compact fluid balls exceeds the nuclear density~ 1 015 g/cm 3 
as in X-ray pulsar, Her-X-1, X-ray buster 4U 1820-30, etc. Bowers 
and Liang[13] pointed out that in the presence of anisotropy 
the upper bound on the surface redshift exceeds the 
upper limit fixed for isotropic matter distribution. Herrera & 
Santosh[14] also investigated the characteristics of anisotropic 
stellar configurations. L. Herrera[15] investigated that energy 
inhomogeneities, dissipative forces, shear effects cause 
anisotropy in the relativistic compact stellar configurations. 
Herrera demonstrated that with the evolution of isotropic 
stellar configurations, the anisotropy develops inside the 
old compact stars. Bhar P, Ratanpal[16] presented the well-
behaved models of Compact stars by assuming Matese 
& Whitman mass function and extensively analyzed the 
physical characteristics of the models. Bhar[17] constructed 
strange star models admitting Chaplygin Equation of state 
and carried out an extensive study of models. In the recent 
past, a lot of research work has been performed related to 
anisotropic compact star models.[18-21] 

Bhar, Tamta and Pratibha[22,23] have elaboratively 
analyzed the anisotropic stellar configurations in the 
relativistic framework of astrophysics. Feroze and Siddiqui 
employed different state linear and nonlinear forms to solve 
Einstein Field equations.[24] Recently some models of quark 
stars have been also analyzed by Malaver.[25,26] Takasia & 
Maharaj have explored compact stellar models using the 
quadratic state equation.[27] With these equations, models 
of astrophysical configurations have been proposed in the 
presence of electromagnetic field and anisotropy.[28] Some 
specific space-time manifolds like paraboloidal space-time 
and pseudo-spheroidal space-time have also been used to 
develop models of charged anisotropic compact stars.[29-31] A 
relative study of charged and uncharged anisotropic models 
has been done by Ratanpal and Bahar[32] in the framework 
of the general theory of relativity. Lobo has developed the 
dark energy star model by using Matese & Whitman’s mass 
function.[33] Dayanandan et al.[34] also investigated compact 
stellar models based on Matese- Whitman mass function.

Motivated by the above-said investigations, we have 
investigated an anisotropic compact star model using a 
new form of the mass function. Models of compact stars 4U 
1820-30 and SAX J 1808-4-3658(SS2) have been designed in 
close agreement with the known observational facts. The 
whole work is structured as follows: Section II includes basic 
Einstein's field equation. In section III, we have introduced 
the new kind of mass function. Moreover, section IV includes 

some additional features supporting the stability of the 
proposed model, and to solve the unknown parameters, 
and we have matched the interior space-time metric with 
an exterior metric in section V which is labeled as junction 
condition. In section VI, we have deduced the physical 
features of stellar models, strengthening the reliability of 
proposed models. At last, the conclusion of stellar models 
has been discussed in section VII. 

bA s I c EI n s t E I n FI E l d Eq uAt I o n s 
The spherically symmetric interior space-time geometry for 
the anisotropic static fluid sphere is defined as

  (1)
Here ν and λ are the functions of radial coordinate r only. 

The energy momentum tensor for anisotropic compact star 
is considered as 

  (2)
Where all the symbols have their usual meaning, for 

the space-time metric given by equation (1) and energy 
momentum tensor given by equation (2) Einstein’s field 
equations with are written as

  (3)

  (4)

  (5)
The mass function for radius r is defined as

   (6)
Using equation (6) Einstein's field equations can be 

written as

  (7)
  (8)

  (9)
Here Δ measures the anisotropy of the fluid sphere.

nE w KI n d o F MA s s Fu n c t I o n
We have assumed a new form of mass function as

  (10)
Where a and b are taken as positive constants. On 

substituting eq.(10) into eq.(7), we have obtain metric 
potential as

  (11)
Expression for matter density can be written as

  (12)
On the substitution of equation (10) into equation (8), 

we obtain
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  (13)
Equation (13) can be integrated by assuming the radial 

pressure as

  (14)
Here we assume p 0 >0. The above expression of radial 

pressure decreases monotonically with r and becomes zero 
at r= √2/a, representing the radius of the star. Substituting 
the above expression in equation (13) it can be integrated 
easily. The value of pressure at the centre is gives as bp0/2. 
Plugging Eq. (14) into Eq. (13) we have obtained

  (15)
On integration of Eq. (15) we have deduce ν as

 (16)
Here C is the constant of integration. The anisotropic 

factor Δ is obtained from expression (9) as

 (17)
The transverse pressure is given by

 (18)
And the pressure and density gradients can be expressed 

as

  (19)

  (20)

 (21)

  (22)

so M E Ad d I t I o n A l FE At u r E s
Values of pr,, pt and ρ at the centre are given as 

  (23)

  (24)
The mass function m(r) can be obtained using Equation (11)

  (25)

  (26)
And the compactness factor is formulated with the help 

of equation (26) as 

  (27)
The surface redshift of the compact stellar structure is 

given by the formula
  (28)

From above equation (28)

  (29)
The physical properties of the proposed relativistic model 

can be examined by observing the trends of metric potential, 
density, radial and transverse pressures, anisotropic factor, the 
mass function and compactness factor with respect to radial 
coordinate r. The metric potential eλ has non-zero positive 
value at r=0 and is regular inside the boundary of stellar 
structures Figure 1. Density and pressures are monotonically 
decreasing with radial coordinate r, they decrease when we 
move towards surface from the centre Figures 2 and 3. So 

Figure 2: Variation of matter densities with radial 
coordinate r.

Figure 1: Variation of metric potentials with radial 
coordinate r  
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the newly obtained solution is well behaved and physically 
acceptable. The pressure to density ratios follow decreasing 
pattern when we move from centre toward surface Figure 4. 
The anisotropic factor is zero at the centre and increases 
towards the outward direction Figure 5. In order to satisfy the 
stability condition -1 ≤ vt

2 - vr
2 ≤ 0, we must have dΔ /dr>0 as 

dρ /dr<0. The density and pressure gradients decrease with 
radial coordinate r and have negative values inside the fluid 
sphere (6). The negativity of the gradients further validates 
the decreasing trends of pressure and density. As observed 
from graphical representation Figure 7, the mass function is 
monotonically increasing with radial coordinate r. Figure 8 

shows the outmarch of compactness parameter with radial 
coordinate r inside the compact structure and manifests the 
increasing behavior in moving from centre to surface. The 
profile of surface redshift is shown in Figure 9. Figure shows 
that surface red shift is a monotonically increasing function 
of radial coordinate r. The behavior of the parameters 
mentioned above is consistent with the physically realizable 
structures. Substituting the values of constants, a and b, the 
surface red shift of the stars can be evaluated from equation 

Figure 4: Variation of pressure to density ratios (ω r = p r / 
ρ, ωt = pt / ρ) with radial coordinate r.

Figure 3: Variation of pressures with radial coordinate r. 

Figure 6: Variation of pressure and density gradients with 
radial coordinate r.

Figure 5: Variation of anisotropy with radial coordinate r.
Figure 8: Variation of compactness parameter with radial 

coordinate r.

Figure 7: Variation of mass function with radial 
coordinate r. 
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(29). We can have an idea about the range of redshift from 
equation (29) and Table 2, according to Bohmer & Herko[35] 
the redshift should be z ≤ 5.

Ju n c t I o n co n d I t I o n s
The values of constants a and b appearing in the solution 
can be obtained by smoothly joining the interior space 
time metric of anisotropic fluid distribution to the exterior 
Schwarzschild solution given by

 (30)
The metric functions e ν and e λ must be continuous at the 

boundary of the compact stars. The radial pressure pr should 
be vanishing at the boundary (r = rb), accordingly we get 

  (31)

  (32)
Constant of integration C from equation (16) can be 

evaluated as

(33)

Phys I c A l F E At u r E s o F s t E l l A r 
M o d E l

TOV Equation and Hydro-static Equilibrium
A superdense structure is in hydrostatic equilibrium if all the 
three forces acting on the structure counterbalance each 
other. The stellar models we have studied here are influenced 
by three forces, i.e., the gravitational force, hydrostatic force 
and anisotropic force. The hydro-static equilibrium condition 
due to these three forces acting on the system is obtained 
by the generalized Tolman-Oppenheimer-Volkoff equation, 
which is given as

  (34)

Here MG = MG( r ) refers to effective gravitational mass inside 
the fluid sphere. The expression for gravitational mass is given 
by Tolman-Whitaker mass formula as

  (35)
Plugging the value of M G ( r ) from expression (35) into 

expression (34), we have the modified Tolman-Volkoff-
Oppenheimer equation as
  (36)
Where we have

  (37)

  (38)

  (39)
Fg, Fh and Fa represent the gravitational, hydro-static and 

anisotropic forces, respectively and the variation of these 
forces for the compact stars are shown in Figures 10 and 11. 
From these patterns, we can conclude that only Hydrostatic 
force shows some irregular behavior, whereas other forces 
follow a well-behaved trend inside the fluid spheres.

Energy Conditions 
When all energy conditions are satisfied inside the star the 
solution is physically valid. Our model satisfies all inequalities 

Figure 10: Variation of different forces with radial 
coordinate r. 

Figure 9: Variation of red shift with radial coordinate r. 
Figure 11: Variation of different forces with radial 

coordinate r. 
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for null energy condition (NEC), strong energy condition (SEC) 
and weak energy condition (WEC) and dominant energy 
conditions (DEC), these inequalities are

 (40)
In Figure 12, we have represented all energy conditions. 

From the trends, we can conclude that all inequalities 
pertaining to energy conditions hold good inside the stars.

Stability Condition

Causality Condition
The radial and transverse components of velocity of sound 
for compact stellar structure are given by

  (41)
If the velocity of sound inside the structure is less than 

the velocity of light, any astrophysical system is said to be in 
stable state. In astronomical units the velocity of light is taken 
as unity. Both the squares of radial and transverse velocities 
are less than 1 and have positive values within the stellar 
configuration Figure 13. Using Herrera's cracking method,[36] 
we can determine the stability of anisotropic compact stars 
against the radial perturbations. We must have -1 ≤ vt2 - vr2 ≤ 
0 in the region inside the compact stars for potentially stable 
structures. Figure 13 indicates that our models correspond 
to potentially stable structures. 

Adiabatic Index
The relativistic adiabatic index Γ is defined as[37]

  (42)
According to Newtonian approximation, if Γ >4/3 then the 

Newtonian sphere is stable. Γ =4/3 indicates the condition 
for equilibrium and stability.[38] The profile of adiabatic index 
with radial coordinate r is shown in Figure (14). The graphical 
pattern of adiabatic index exhibits the well-defined trends 
inside the compact stellar configurations

co n c lu s I o n 
In this composition we employ a new form of mass function 
to develop a well-behaved model of anisotropic compact 

Table II: The values of the various parameters obtained for the compact stellar models.

Compact stars Central density (ρ0 gms/cc) Surface density (ρs gms/cc) 2M/rb Surface redshift(zs)

4U 1820-30 2.14×1015 0.71×1015 0.664 0.7245 

SAX J 1808.4-3658(SS2) 4.91×1015 1.64×1015 0.615 0.611

Table I: The values of the parameters a and b used for two compact stars.

Compact stars M/ MΘ Mass (km) Radius (km) a (km -2) a (km -2) 

4U 1820-30 2.25 3.31875 10 0.02 0.202636535 

SAXJ1808.4-3658(SS2) 1.323 1.951425 6.35 0.049600099 0.394970806 

Figure 14: Variation of adiabatic index with radial 
coordinate r.

Figure 13: Variation of vi
2 with radial coordinate r. 

Figure 12: Variation of energy conditions with radial 
coordinate r.
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stars 4U 1820-30 and SAX J 1808.4-3658(SS2). We have 
examined all physical properties of models such as metric 
potential, density, pressure, mass function, surface red-
shift, gravitational redshift, and the stability of the stellar 
configurations. The physical parameters of our model, such 
as (eλ, ρ, pr, pt, pr / ρ, pt / ρ) are free from central singularities 
and follow all necessary physical constraints. The metric 
potential increases and density, pressure, pressure to density 
ratios decrease monotonically outwards as shown in figs. 
1 to 4. Anisotropy factor Δ, and adiabatic index Γ increase 
when we move outwards from centre to surface, which 
shows our models are physically realizable Figure (5,13). 
When we follow the radial and tangential pressure pattern, 
we conclude that the radissal pressure vanishes at the star's 
surface but the tangential pressure does not vanish. So there 
exists anisotropy in the interior of our stellar configuration. 
The anisotropic factor Δ, having minimum value at the centre 
and maximum at the surface Figure (5). The mass function 
and compactness parameter are plotted graphically in figs. 
7 and 8, respectively. The surface red shift z s increases when 
we move towards the surface from centre shown in Figure 
(9). By anatomizing the graphical representations, we can 
say that our model is physically viable. All energy conditions 
are satisfied, which is necessary for the physical existence of 
our configurations. The null energy condition (NEC), the weak 
energy condition (WEC), and strong energy condition (SEC) 
have been shown in Figure (12). The inclination of pressure 
and density gradients are negative, which signifies that the 
pressure and density decrease radially outwards Figure 6. 
The hydrostatic equilibrium condition representing the 
counterbalancing of the different forces acting on the fluid 
sphere is shown in Figures. 10 and 11, approve the hydrostatic 
equilibrium of proposed models of compact stars. However, 
the hydrostatic force shows some unusual behaviour value 
of adiabatic index is more than 4/3 throughout the stellar 
structure, which justifies the stability of our model Figure 
14. The patterns of squares of radial and transverse velocities 
have been shown in Figure (13), both vr

2 and vt
2 are less than 

1. For any stable configuration vt
2 - vr

2 must have values 
between -1 and 0 ( -1 ≤ vt

2 - vr
2 ≤ 0 ).

We have systematically examined our models for two 
compact stars and all the parameters of these stars have been 
depicted in Tables 1 and 2. All characteristics of this model 
are well-matched with the observed data for 4U 1820-30 and 
SAX J 1808-4-3658(SS2). 
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