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ABSTRACT

These Image segmentation process includes image pre-processing, background removal, foreground detection, outlier
removal and post processing. In order to develop an efficient image segmentation system, it is mandatory to design
these sub-processes with utmost efficiency. Image segmentation systems can be designed to be application specific
or application independent depending upon the design of these internal modules. Algorithms like kMeans, fuzzy C-
Means, etc. are generic, but the output of these algorithms must be tuned depending upon the given application for
efficient segmentation. For instance, in order to effectively segment leaf imagery, the output clusters of kMeans must
be checked for green coloured values, and clusters where green colour is prominent must be extracted for segmentation.
The same task can be done via the use of Saliency maps, Grey level co-occurrence integrated algorithm, etc. by tuning
their internal parameters. Thus, there are a wide variety of similar algorithms developed In order to reduce this
ambiguity, this text reviews different image segmentation algorithms, and compares their statistical performance in
terms of peak-signal-to-noise-ratio (PSNR), delay needed for computation, minimum mean squared error (MMSE),
most probable application, etc. Moreover, this text also evaluates certain nuances, advantages and drawbacks of
these algorithms, which will assist researchers to select the best algorithm set based on their application. This text
also recommends certain improvements which can be done in these algorithms, in order to improve their performance
via fusion, cascading and ensembling.
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Segmentation of images necessarily means
extraction of image regions that are required for
future processing in image processing applications
like classification, clustering, disease identification,
etc. In order to develop an effective image

segmentation engine, it is necessary that pre-
processing, filtering, enhancement, noise removal,
background detection, foreground detection and
outlier detection operations must be performed
with high efficiency. The flow of these operations
can be observed from the figure 1, wherein all the
phases are connected in tandem for effective image
segmentation. From the flow it can be observed
that images are acquired from real time sources or
taken from available datasets. Real-time image
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segmentation processes are complex when compared
to dataset-based image segmentation ones,
because real-time images have a largely varying
number of noise sources, angular distortions, size
variations, illumination variations, etc.
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Figure 1: Flow of a typical image segmentation system

These images are given to a pre-processing block,

wherein the following operations are performed

[1],

¢ Noise removal using median filter, wiener filter,
etc. in order to reduce the probability of
distortions in the image. This is an essential
process, and allows image to have clear visual
components which makes the image easier to
process by the consecutive blocks.

e Image enhancement via histogram equalization,
colour palette modification, angular transforms,
etc., which necessarily enhances regions of
interest, while reducing the visual detail for
background and outlier regions.

o Filtering image via registration, linear filters,
non-linear filters, band pass filters, band stop
filters, etc. is done such that the image is ready
for background detection [2]. These filtering
algorithms allow the image to be represented
in a form where unwanted pixels have minimum
entropy, while pixels coming under regions of
interest have maximum entropy.

Once the pre-processing module has produced
an image wherein background pixels have minimum
entropy, while foreground pixels have maximum
entropy, then background removal algorithms like
quaternion detection, threshold-based filtering, etc.
are applied. These algorithms aim at finding pixels
which have minimum correlation and variance. Once
these pixels are removed, then almost 60%
segmentation process is complete, thus it is necessary
that background detection algorithms must be
designed with utmost efficiency. The following

equation is followed for identification of

background pixel probability,
BPP(X) =—* [* [ P.(k, ) dx dx...L
(=17 j_kj_k > (K, X) dx dx.... (1)

Where, 'k’ is the neighbouring window size, ' " is the
pixel variance for the pixel number 'x'. Based on
this probability, background pixels are removed, and
the remaining pixels are passed to a foreground
pixel identification block. This block is designed
using saliency detection, entropy maximization,
edge detection, texture analysis, thresholding, etc.
The result of this block is a coarse segmented image,
which consists of regions of interest, with some
unwanted pixels a.k.a. outlier pixels. These outlier
pixels are removed using the consequent block. The
outlier removal block is also termed as post-
processing block, which is designed depending upon
the application. For instance, if the application
demands extraction of fluid regions from brain MRI
(Magnetic resonance imaging), then this block will
remove all the grey and white regions from the
foreground image regions, and present the
remaining pixel-sets at the output. A large number
of algorithms are designed by researchers over the
years for segmentation of images, the next section
reviews these algorithms, and suggests various
optimizations that can be made in them in order to
improve their efficiency. This is followed by
statistical analysis of these algorithms w.r.t. their
applicability. Finally, this text concludes with some
interesting observations about these algorithms and
suggests ways in which their performance can be
optimized.

LITERATURE REVIEW

Image segmentation involves extraction of regions
of interest from images such that these regions are
useful for further image analysis. For instance, a
brain magnetic resonance image (MRI) segmentation
algorithm should be able to extract out the skull
regions from the inputimage, such that these regions
will be used to analyze presence of tumors or other
disorders from the image. Such an algorithm that
uses a modified version of fuzzy C-Means (FCM) can
be observed from [2], wherein Pythagorean fuzzy
sets are used in order to segment general purpose
images. It uses a minimization objective function
to reduce sum of every pixel to its clusters, the
function can be observed from equation 2,
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Where, X" is the pixel value, 'y" is the cluster centre,
‘d" is distance between pixel and cluster centre,
while 'u' defines the fuzzy membership degree
between pixel and cluster head, and (m, n) are the
image size. The cluster centre is evaluated using
the following equation,

Yi= ZL(Uij)z % /Z?:l(uii)z“"(?’)

Based on these equations, every image and its
objective function values are evaluated. Based on
the clusters where these values are minimum,
image pixels are clustered into 1 of 'N' different
parts. Each of these parts are represented using a
different grey colour level in order to obtain the final
segmentation results. A segmentation accuracy of
51% is achieved using this model, with a moderate
delay of 272s for different images. This accuracy is
high when compared with fuzzy C Means (FCM) that
gives an accuracy of 46.6% and intuitionistic fuzzy
C?means (IFCM) that gives an accuracy of 45.91%,
but this accuracy is lower than kernel weighted fuzzy
local information C-means (KWFLCM) which gives
an accuracy of 53%. Although KWFLCM has good
accuracy when compared with PFCM, but it requires
an exponentially high delay of 4845 seconds, which
is 17 times higher than the proposed PFCM method.
This delay can be reduced and accuracy can be
improved via the use of transfer learning as
described in [3]. In this work, researchers have used
object detection as the base model that performs
effective image segmentation from the knowledge
gained from transfer learning as observed from
figure 2, wherein atrous spatial pyramid pooling
(ASPP) is used for effective feature extraction.

Due to this model an accuracy of 79.1% is achieved
on ImageNet and COCO datasets. The model
requires only 0.171 seconds for segmentation after
training. The training delay is high, but is a one-
shot operation, thus the average delay across
multiple segmentation operations is low. This
algorithm has higher accuracy when compared with
DarkLab network which provides an accuracy of
76.3% and RefineNet which has an accuracy of
73.6%. But is has lower accuracy when compared
with Pyramid Scene Parsing Network (PSPNet)
which has an accuracy of 81.2%, and Deeplab
Version 3, which has an accuracy of 82.1%. Both
these models; even though have high accuracy, but
are not tested on large image datasets, thus it is
recommended that these models must be tested
thoroughly before real-time deployment. A survey
of such algorithms applied to different datasets can
be observed from [4], wherein it is observed that
convolutional neural network (CNN) based algorithms
outperform other algorithms in terms of accuracy of
segmentation and have reduced average delay of
segmentation.

General purpose algorithms provide limited
performance due to their application on a wide
variety of applications, in order to improve this
accuracy; application specific segmentation
algorithms are developed via tuning the baseline
algorithm’s internal parameters. For instance, the
work in [5] proposes a modified hybrid algorithm
consisting of clustering, Bayesian classifier, and a
Graph-based module for texture analysis in remote
sensing images. The model uses mean approach for
performing clustering, wherein mean red, green and
blue values are evaluated for each window size.
These values are evaluated using the following
equation,

1 N N o
m(R/G/B):N_*zz|(R/e/B)('1J) ----- 4)
c i=l i=1

Wherein, Mg, and | z,q/8 are evaluated for

each colour in the image, while N, are number of

pixels in the given window. Based on these values,
clustering is performed. Optimization of the clustered
pixels is done using average standard deviation values,
which is evaluated using the following equation,
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Where, D,,, D, and D, are average standard deviation
values for the given colour sets.

Finally, a graph is created using these colour
values and based on the edges and nodes of this
graph image pixels are segmented. An accuracy of
90.82% is achieved using this hybrid method when
tested on the LANDSAT dataset, which is higher than
hierarchical weighted multi-segmenter (MW3AR)
that has an accuracy of 88.01%, Dynamic hierarchical
segmentation (DHC/K) that has an accuracy of 88.64 %,
ENVI/M that has an accuracy of 86.48 %, Illumination
invariant unsupervised segmenter (AR3D+EM) that has
anaccuracy of 86.59 %, Recursive texture fragmentation
and reconstruction segmentation (R-TFR/F) that has
an accuracy of 86.42 %, Unsupervised texture
segmentation (TS-MRF/M) that has an accuracy of
86.98 % and tree-structured Markov random field
model using Bayesian network (TS-MRF/K) that has
an accuracy of 81.33 %. This improves the real-time
applicability of the proposed method for satellite
imagery. The performance of this algorithm can be
improved by adding another layer of deep learning
semantic model for segmentation as proposed in [6].
This model uses fast semantic image segmentation
that assigns a class to each image pixel via a deep
neural network. An aggregation of similar class pixels
with a pre-decided confidence threshold results
into the final segmented image. The proposed
algorithm has a general-purpose accuracy of 71.65%
which is evaluated for a large number of images.
This accuracy can be furtherimproved using a weakly
supervised deep learning model as suggested in [7].
This model is applied to medical image segmentation
and produces accuracies in the range of 98.9% for
Trans rectal ultrasound scan (TRUS) images, 99.7%
for computer tomography (CT) images and 98.8%
for General-purpose ultrasound (US) images. Overall
architecture for this highly accurate medical image
segmentation model is observed , wherein a prior-
knowledge generator block is used to generate
initial segmentation maps. These maps are given
to a segmentation block in order to obtain the final
segmented image. Other approaches for medical
image segmentation are described in [8], from where
it can be observed that deep neural network based
on VGGNet architecture outperforms other algorithms
by providing an accuracy of 85.5% across 14,696
image scans. Fusion of the model in [7] and [8] can
be done in order to effectively segment lung regions
with high accuracy. In order to perform this fusion,
the work in [9] can be used. This work is based on an
altogether different domain of petrochemical sensors,

but the baseline algorithm can be used for fusion of
any two methods.

Another  application  specific image
segmentation model that is capable of detecting
raw G-band chromosomes from genetic sequence
images can be observed from [10]. In this model a
decision tree algorithm is used which is based on
thresholding in order to obtain an accuracy of 96%
for different chromosome segmentation
applications. The decision tree is based on image
parameters like Object size, Maximum single
chromosome size, Object pixel intensity, Thickness
throughout the skeleton, Average thickness,
Number of end points and Number of branch points.
These parameters are given to a thresholding unit
in order to separate out a single chromosome (T-
cell) from the entire image. The model was tested
on 508 images, and highly accurate results were
evaluated. But this accuracy might reduce as number
of images used for testing are increased. In order to
keep a consistency in accuracy of segmentation, the
work in [11] proposes a gradient-based oriented
distance evaluation model, that uses gradient
direction information from edge data in order to
improve clustering performance for image pixels.
This model reduces overall computation time by
15% and produces an accuracy of 85% for traffic sign
and number plate images, which is moderate, but
can be used for real-time deployments.

A large variety of noise types can affect the image
while it is undergoing segmentation. These noise
types are also called as noise artefacts, and affect
segmentation performance. In order to correct
these artefacts, work in [12] suggests a deep
learning model which is uses time displaced line
detection features in order to reduce detection loss,
reconstruction loss and segmentation loss in the
segmented image. This network is attached to
reconstruction and segmentation CNN models to
perform high accuracy segmentation via network
cascading. Itis observed that the proposed cascaded
CNN model is able to achieve a segmentation
accuracy of 96.2%, which is high when compared
with dual channel CNN which has an accuracy of
90.8%, single-channel CNN that has an accuracy of
94.8%, and baseline CNN model that has an accuracy
of 93.2%, thereby making the proposed model
highly effective for both noise removal and high
accuracy segmentation applications.

Transfer learning approaches allow the
knowledge gained from one domain to be used in
another domain without the need of retraining the
network. The work in [13] proposes such an algorithm
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that uses a combination of kernel learning and
image weighting in order to reduce maximum mean
discrepancy (MMD) for joint kernel optimization.
The model is applied on MRI images, and produces
an accuracy of 80%, which can be useful for high-
speed segmentation applications. Transfer learning
models can use fuzzy clustering in order to improve
their efficiency, which can be observed from [14],
wherein a comparison of different fuzzy clustering
models is applied on MRI images, and their
performance is evaluated. It is observed that
extended Fuzzy C-Means (eFCM) model that uses a
combination of image enhancement and FCM
outperforms other fuzzy-based segmentation
methods. The model reduces noise and enhances
image quality using the following equation,

e = i(ﬁ)*(('lz le (, j,e))— I.,m,ej..(es)

Where, the image dimensions are depicted using
(I, m, n) and the image is represented using ‘I. Due
to this equation, noise components from the image
are reduced, thereby resulting into an accuracy of
95.1% when compared on different image types,
which is higher than FCM (79.1%), Credibilistic FCM
(54.2%), FCM type 2 (20.8%), Kernel-based FCM
(78%), Intuitionistic FCM (78.26%), Kernel-based
Intuitionistic FCM (65.2%), Credibilistic Kernel-
based FCM (51.28%) and Credibilistic Intuitionistic
FCM (64.9%) models.

Semantic segmentation models are also used for
performing high accuracy image segmentation. The
work in [15] proposes such a CNN-based semantic
segmentation model that is applied on scanning
electron microscopy (SEM) imagery. The algorithm
uses pixel-level contextual class annotations,
damage v/s background segmentation, contextual
semantic segmentation and visual inspection blocks
in order to generate class-level masks. These masks
are given to a CNN-based U-Net and Seg-Net
architecture in order to improve segmentation
performance of the system. The system is able to
achieve an accuracy of over 85% when applied to
segmentation of damage in concrete images. This
performance can be further enhanced via the use
of adaptive morphological reconstruction (AMR),
wherein noise removal can be done via removal of
unwanted seed points, use of multi-scale structuring
elements and hierarchical segmentation as
suggested in [16].

The algorithm is able to improve accuracy of
original seeded region growing (SRG) algorithm
from 71% to 80% when compared on a large set of
images. This accuracy can be further enhanced with
the help of multi-task deep learning models which
use fully convolutional network (FCN) architectures
for segmentation. Such a model can be observed
from [17] wherein 3D images are segmented using
Simultaneous Segmentation and Landmark
Localisation Network (SSLLN). This network is applied
to cardiac images in order to obtain an accuracy of
94.3% which makes it suitable for real-time clinical
use. This accuracy is high when compared with 3D
Seg CNN (92.3%), 3D-Auto Encoder (92.6%) and 3D
anatomically constrained neural network model
(93.9%), thereby making it useable for real-time
deployments. The accuracy of this model can be
improved by addition of a boundary-weighted
domain adaptive neural network (BOWDANet) as
described in [18], wherein an accuracy of 95.5% is
achieved for MRI images. Another application
specific image segmentation model based on two-
stage CNN models for Spinal cord segmentation can
be observed from [19], wherein semantic image
classification is used. This model has an accuracy of
87.32% for segmenting spinal cord data from over
500 images, which makes it useful for clinical
deployments. The architecture uses a combination
of graph convolutional segmentation network
(GCSN) and residual U-Net (ResUNet) for coarse and
fine segmentation respectively, due to which such
a high accuracy is achieved. Other measures for
evaluating performance of image segmentation
models can be observed in [20], wherein White
Matter Hyperintensities (WMH) segmentation is
used as an application for evaluation of metrics like
Dice similarity coefficient, absolute log-transformed
volume difference, modified Hausdorff distance
(95th percentile), F1-score andsensitivity. These
measures can be used for evaluating performance
of any kind of image segmentation models.

The Bayesian UNet model which is similar to
hyper-dense model is described in [21] also provides
good segmentation accuracy of 84% on both medical
and general-purpose datasets. These models have
good accuracy when input images are of good
quality, but as the input image quality deteriorates,
so does the accuracy of segmentation. In order to
achieve high image segmentation accuracy for low
contrast images a high-resolution encoder-decoder
combination is described in [22]. This model uses a
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combination of skipped connections along with high
resolution pathways that are deeply supervised, and
guided via minimization of cross-entropy and
contour regression models to improve edge detection
quality.

Due to this high-resolution pathway and the use
of encoder-decoder network, an accuracy of 89% is
achieved for prostate, bladder and other medical
image segmentation applications. Other architectures
like the ones mentioned in [23], [24], [25] and [26]
use similar deep learning approaches like Markov
Random Fields, Locally-Oriented Appearance and
Dictionary Learning, Fully Connected Network (FCN)
and Hausdorff Distance minimized CNN respectively.
These architectures are able to obtain an accuracy of
78.9%, 95%, 82.08% and 96% respectively on different
medical domain applications.

A novel work that uses domain-oriented feature
embedding (DoFE) for segmentation of unknown
medical images is proposed in [27]. This model uses
aggressively domain specific feature sets in order
to improve the efficiency of segmentation, and uses
these feature sets in order to create a Domain
Knowledge Pool (DKP). Features from new images
are matched with this DKP, and depending upon
matching percentages, application specific
segmentation is performed. An accuracy of 88.44%
is achieved using this model, which is high enough
for clinical use. The model is tested only for fundus
images, and must be tested for a larger number of
domains for better performance evaluation.
Transfer learning model like the one mentioned in
[28] can also be used to improve its accuracy,
wherein DKP can be created for one domain and
used for another domain for reducing training delay.
The transfer learning model of [38] is able to achieve
accuracies in the range of 98% for medical
segmentation, and thus; must be tested for non-
medical domains as well. Similar models are
mentioned in [29], [30], [31] and [32] wherein deep
attentive features, generative adversarial model,
Fully Convolution Network with Continuous Max-
Flow, Deep Neural Network Regression and
Anatomy-Regularized Representation Learning are
used for enhancing medical image segmentation
accuracy. These models have an accuracy of 90%,
85%, 93.2%, 96.6% and 81.05% respectively for
different medical applications. As these models are
based on CNN and its sub-types, it is observed that
their performance is better than their non-CNN
counterparts. In order to evaluate performance of

these models, the next section compares these models
in terms of accuracy, application and computation
complexity which is directly proportional to delay of
execution. This comparison will assist researchers
to identify best possible algorithm set(s) for their
specific applications, which will not only reduce the
time needed for deployment, but also guarantee
an optimal system performance.

STATISTICAL ANALYSIS

In order to compare performance of the reviewed
algorithms, these algorithms are evaluated in terms
of overall accuracy (Acc.), application (App.) and
computational complexity (CC). The computational
complexity is converted into complexity levels from
1 to 5, wherein each of these values are inferred
from the following table-1.

Table-1: Computational Complexity to Computational
Level Inference

Computational | Complexity
Complexity Level
0(1) 1
0 (n) 2
O (n*log(n)) 3
0 (n% 4
O (n!) 5

Based on this inference, the following comparison
shown in table-2 is done for each of the reviewed
algorithms.

Table-2: Application Specific Performance Evaluation of

Different Algorithms
Method App. Acc. (%) | CC
PFCM [2] General 51 3
FCM [2] General 46.6 2
IFCM [2] General 459 2
KWFLCM [2] General 53 5
CNN with ASPP with TL [3] General 79.1 4
DarkLab [3] General 76.3 4
RefineNet [3] General 73.6 4
PSPNet [3] General 81.2 5
Deeplab [3] General 82.1 5
Hybrid GBBT [5] Satellite 90.8 4
MW3AR [5] Satellite 88.01 | 3
DHC/K [5] Satellite 88.64 | 3
ENVI/M [5] Satellite 8648 | 4
AR3D+EM [5] Satellite 86.59 4
R-TFR/F [5] Satellite 8642 | 3
TS-MRF/M [5] Satellite 86.98 | 4
TS-MRF/K [5] Satellite 8133 | 4
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Fast Semantic [6] General 7165 | 5 DoFE CNN [37] Medical 88.44 | 4
Weakly supervised DL [7] Medical 98.9 5 3D ACNN [17] Medical 93.9 5
VGGNet CNN [8] General 85.5 4 BOWDANet [18] Medical 95.5 5
DT [10] Medical 96 4 GCSN with ResUNet [19] Medical 87.3 4
GB ODE [11] General 85 3 GAN [21] Medical 85.66 5
CRNN Noise Removal [12] Medical 96.2 5 3D UNet [21] Medical 7741 | 4
Dual CNN [12] Medical 90.8 4 Deep Support GAN [21] Medical 77.82 5
Single channel CNN [12] Medical 94.8 4 Two-stage CNN [21] Medical 83.85 5
GoogLeNet CNN [12] Medical 93.2 4 VGGNet [22] General 96.6 4
MMD with TL [13] Medical 80 3 Weakly Supervised CNN [23] General 85 5
eFCM [14] General 95.1 2 2D and 3D CNN [24] General 88.4 5
FCM [14] General 791 | 2 CACNN [25] General 87.08 | 5
FCM T2 [14] General 20.8 1 3D APA CNN [26] General 94.1 5
CFCM [14] General 54.2 2 UNet++ [27] General 97.81 5
KFCM [14] General 78 3 Key point CNN [29] Multi modal 50 4
IFCM [14] General 78.26 3 Hyper dense networks [30] Multi modal 95.8 5
KIFCM [14] General 65.2 3 Connection less Single path Multi modal 90.1 4
CKFCM [14] General 51.28 3 [30]

CIFCM [14] General 64.9 3 Connection less dual-path [30] | Multi modal 94.82 5
CNN UNet and SegNet [15] Medical 85 4 Connected dual-path [30] Multi modal 95.5 5
AMR with SRG [16] General 74 3 Bayesian UNet [31] Multi modal 84 4
SSLLN [17] Medical 94.3 5 High resolution encoder Medical 89 5
3D Seg CNN [17] Medical 92.3 4 decoder [32]

3D AE [17] Medical 92.6 4 Markov Random Fields [33] Medical 78.9 3
3DACNN [17] Medical 93.9 5 Locally-Oriented Appearance Medical 95 4
BOWDANet [18] Medical 955 | 5 and Dictionary Learning [34]

GCSN with ResUNet [19] Medical 873 | 4 FCN [35] Medical 82.08

GAN [21] Medical 85.66 | 5 HD CNN [36] Medical 96 5
3D UNet [21] Medical 7741 | 4 DoFE CNN [37] Medical 88.44 | 4
Deep Support GAN [21] Medical 77.82 5

Two-stage CNN [21] Medical | 885 | 5 | From this performance evaluation, it is observed
VGGNet [22] . General %6 | 4 that these algorithms are majorly used for Medical,
Weakly Supervised CNN [23] General 85 5 . . L

2D and 3D CNN [24] Goneral YRR Multimodal, Satellite or General-purpose applications.
CACNN [25] General 8708 | 5 Thus, in order to assist researchers to effectively
3D APA CNN [26] General 941 | 5 select these algorithms, the following figures 3, 4,
UNet++ [27] General 9781 | 5 5, and 6 are used. These figures compare accuracy
Key point CNN [29] Multi modal 50 4 | of reviewed algorithms w.r.t. their application of
Hyper dense networks [30] Multi modal 95.8 5 use.

Connection less Single path Multi modal 90.1 4

[30] From these figures it can be observed that CNN-
Connection less dual-path [30] | Multimodal | 94.82 | 5 based models outperform other models in terms
Connected dual-path [30] Multimodal | 955 | 5 of raw accuracy of segmentation, but these algorithms
Bayesian UNet [31] Multimodal | 84 | 4 | have high complexity of execution due to which
;"eizzsro[';zt]m” encoder Medical 8 | 5| high performance processing elements are needed
Markov Random Fields [33] Niedical 29 T3 for |mpIerT1e.ntat|orT. Moreover, the§e algorithms
Locally-Oriented Appearance Medical % 2 can be optimized using transfer learning models for
and Dictionary Learning [34] improved speed.

FCN [35] Medical 82.08 | 4

HD CNN [36] Medical 96 5
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Figure 3: Accuracy for General Purpose Applications

For general purpose applications, it can be
observed that UNet++, eFCM and VGGNet based
CNN models outperform other models, thus they
can be used for high performance segmentation.
Similarly, medical image segmentation algorithms
can be observed from figure 4 as follows,

Accuracy for Medical Image Segmentation
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Figure 4: Accuracy for Medical Image Segmentation

For medical imaging applications, it can be
observed that most algorithms give very good
segmentation results, but architectures like
Decision Tree [33], CRNN Noise Removal [34] and
DAF [35] models outperform other models, thus
they can be used for high performance segmentation.
Similarly, multimodal image segmentation algorithms
can be observed from figure 5, wherein image
segmentation is performed in order to extract
multiple regions of interest from the input image

Multimodal Image Segmentation Algorithms
12000%

10000%

8000%
6000%
4000%
2000%

0%

Key point  Hyper dense Connection Connection Connected
CNN [29] networks less Single less dual- dual-path
[30] path [30] path [30] [30]

Figure 5: Accuracy for Multimodal Segmentation

Bayesian
UNet [31]

For multimodal applications, it can be observed that
Hyper dense networks [36] [37] outperform other
models, thus they can be used for high performance
segmentation. Similarly, satellite image segmentation

Satellite Image Segmentation Approaches
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Figure 6: Accuracy for Satellite image segmentation

algorithms can be observed from figure 6 as follows,

For satellite image segmentation, it can be observed
that Hybrid GBBT outperforms other models, thus
they can be used for high performance segmentation.
This inference will be useful for researchers in order
to select the most suited algorithm for their given
application.

CONCLUSION AND FUTURE SCOPE

From the result evaluation, it can be observed that
CNN and its related models outperform other
models in terms of core accuracy of segmentation.
For general purpose applications like natural image
segmentation, object-based segmentation, etc. the
eFCM model and VGGNet models are highly
recommended due to their high accuracy and low
complexity, while the UNet++ model can be used
for highly precise segmentations. Other applications
like satellite image segmentation & multimodal
segmentation requires high complexity algorithms
like Hybrid GBBT and Hyperdense networks
respectively in order to obtain high segmentation
accuracy. Medical imaging algorithms are already
saturated in terms of accuracy, and use models like
transfer learning, GAN and other CNN types in order
to obtain high accuracy of segmentation. It is
recommended that eFCM be integrated with CNN
models, and transfer learning be used for inter-
domain knowledge transfer in order to achieve high
quality multi-domain segmentation.
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