
74 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

I N T R O D U C T I O N

Reliable software is expected to work free of
errors for a specific period of time. It is difficult to
express software reliability in terms of time. But many
researchers have been successful in representing
reliability as a function of time. In this work our aim
is to broadly categorize a software as being reliable
or not. Testing is done to improve the reliability
aspect of the developed program. When considering
object-oriented programs, testing is complicated by
the features like dynamic polymorphism and
inheritance [2]. Different phases of software
development employ different approaches to
testing [3] [4]. The testing phase often consumes
30 to 50 percent of total development time and cost.
State based [5] and structural analysis based test
case generation often helps in generating test cases
that may not be anticipated by testers. Compiler
based approach for preprocessing OOP is discussed
in [6]. Compiler based model construction for
distributed regression testing is discussed in [7]. In
this work the compiler based model construction
produces a System Dependence Graph (SDG) which

RESEARCH ARTICLE

The Author(s). 2020 Open Access This article is distributed under the term of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if change were made. The Creative Commons Public Domain Dedication waiver (http:/
/creativecommons.org/publicdomain/zero/1.0) applies to the data made available in this article, unless otherwise stated.

Corresponding Author : Vipin Kumar K S, Dept of
CSE, Govt. Engineering College, Thrissur, PIN-
680009,India; e-mail : vipin.kumar.k.s@gectcr.ac.in

How to cite this article :

Vipin Kumar K.S, V.P., Mathew, S., Madhav, H. (2020).
Compiler-Based Approach to Predict Reliability of
Object-Oriented Programs. SAMRIDDHI : A Journal of
Physical Sciences, Engineering and Technology,
Volume 12, Special Issue (3), 74-79.

Source of support : Nil

Conflict of interest : None

SAMRIDDHI Volume 12, Special Issue 3, 2020 Print ISSN : 2229-7111 Online ISSN : 2454-5767

Compiler-Based Approach to Predict Reliability of Object-
Oriented Programs
Vipin Kumar K S1, Haritha Madhav C2, Sheena Mathew3,
1,2 Dept of CSE, Govt. Engineering College, Thrissur, PIN-680009,India; e-mail : vipin.kumar.k.s@gectcr.ac.in
3 Dept. Of CSE, School of Engineering,Cochin University of Science and Technology PIN-682022, India.

A B S T R A C T

In this work, we use structural analysis to estimate reliability of developed program. The compiler-based approach to
reliability prediction first builds a System Dependence Graph (SDG) model for the program. The model is used for
analysis, which output metric values representing structural complexity of the program. The metric values are then used
to predict whether the program is reliable or not. Processing of the program is achieved by building a compiler based
analysis tool using ANTLR [1].

Keywords: OOP, Metric, Software Reliability, Programming, SDG, Software, Testing.

SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, (2020); DOI : 10.18090/samriddhi.v12iS3.17

is analyzed to evaluate different metrics suitable
to predicting error proneness of the program. Since
reliability is directly related to probability of error,
more the likelihood of error lesser will be the
reliability of the program and vice versa.

The work can be partitioned into

1. Software metrics selection for estimating
reliability.

2. Compiler-based model construction and metric
evaluation.

7575SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

Estimating reliability based on metric evaluated.
For metric selection we have used PROMISE DATA
SET developed by NASA under the NASA Metrics
Data Program. Now available under PROMISE
SOFTWARE ENGINEERING REPOSITORY as PROMISE
DATA SET, PROMISE DATA SET is maintained by
University of Ottawa.

SOFTWARE METRIC SELECTION

Metric selection is an important step in reliability
based modeling. Metric selection increases
efficiency by not compromising on accuracy.
Selecting the right metric, from the data set is of at
most importance to achieve higher performance
level with minimum effort. The following steps
were performed to arrive at a manageable set of
metrics:

1. Cleaning the data set

2. Eliminate redundant features

3. Elimination of features by Recursive Feature
Elimination (RFE)

4. Rank features by importance

The cleaning of data set comprised of removal of
the features/metrics that showed no variation in
values. Following this findCorrelation function in
Cart R package was used to remove redundant
metrics. Recursive feature elimination was then
carried out on the resulting data set using the rfe
function in R tool which resulted in eleven metrics.
The accuracy when computed showed that further
reduction reduced the accuracy as shown in Fig 1.

The importance was calculated for these metrics
using Learning Vector Quantization (LVQ). All
metrics were seen to have an importance higher
that 5 as shown in Fig 2.

Figure 1: Accuracy with respect to number of features

Figure 2: Features ranked by importance

ROC curve variable importance

 Importance

 sumLOC_EXECUTABLE 0.8111

 sumCYCLOMATIC_COMPLEXITY 0.7841

 COUPLING_BETWEEN_OBJECTS 0.7697

 WEIGHTED_METHODS_PER_CLASS 0.6991

 RESPONSE_FOR_CLASS 0.5872

 NUM_OF_CHILDREN 0.5382

 DEPTH 0.5332

 PERCENT_PUB_DATA 0.5230

 DEP_ON_CHILD 0.5204

 LACK_OF_COHESION_OF_METHODS 0.5168
 FAN_IN 0.5002

We were able to reduce from the initial set of ninety
four metrics to eleven metric. The final list of metrics
is:

COMPILER-BASED MODEL CONSTRUCTION AND

METRIC EVALUATION

The intermediate representations for procedural
programs were extended by several researchers to
be useful for representing object-oriented programs.
Kung et al. proposed Object Relation Diagram(ORD)
and Block Branch Diagram(BBD) for capturing
essential object oriented features[8][9]. The Call
Graph representation was introduced by Harrold and
Rothermel[10]. It has been shown in the paper [11]
that inheritance from the view point of depth of
inheritance, maintenance and maintainability is an
important feature of object-oriented programs. It
is shown that it is 20% faster to make modifications
to a program employing inheritance compared to
programs without inheritance. Inheritance has
been incorporated in many program models. In the
work by Najumudheen et al. [12], they extended
the SDG for object-oriented programs with a
representation of inheritance. SDG has gained wide
acceptance as a program representation. An Ext-
SDG, where SDG is augmented with control flow is
used in [13]. Numerous models pertaining to
Object-Oriented Programs have been proposed in
literature. One of the most popular model which
was based on System Dependence Graph (SDG)

PERCENT_PUB_DATA, COUPLING_BETWEEN_OBJECTS, DEPTH, FAN_IN,
LACK_OF_COHESION_OF_METHODS, NUM_OF_CHILDREN, DEP_ON_CHILD,
RESPONSE_FOR_CLASS, WEIGHTED_METHODS_PER_CLASS, sumCYCLOMATIC_COMPLEXITY
and sumLOC_EXECUTABLE

Compiler-Based Approach to Predict Reliability of Object-Oriented Programs

76 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

[14]. It is not possible to find a single model that is best suited for all purposes. One model may capture
certain features of the program better than other models.

ANTLR is a powerful parser generator for understanding, preparing, executing and interpreting code. By
taking input, which is a Context Free Grammar augmented with actions, ANTLR produces a parser that can
create and traverse parse trees. ANTLR accepts EBNF grammar, which also includes lexer rules in addition
to normal parser rules. The working of ANTLR tool can be summarized as shown in the Fig 3. Fig 3 also
shows how the SDG Model based evaluation of metric is carried out.

A sample program is given in Fig. 4 and its graphical representation is depicted in Fig. 5 for clarity.

The nodes and edges of the SDG in Fig. 5 is constructed and represented internally as a result of the
actions being carried during parsing. The Fig 6 shows the metrics evaluated from the SDG model for a
sample java program in Fig. 4. Fig. 7 shows the SDG for the same, both of which are generated by the
compiler-based tool.

Metric values

SDG Model based metric evaluator

Program

SDG Model based metric evaluator
 (builds models and evaluates the metrics)

ANTLR

CFG based specification for Model construction and metric
evaluation

Figure 3: SDG Model based metric evaluation

Figure 4: Sample program

Figure 5: SDG for sample program

Compiler-Based Approach to Predict Reliability of Object-Oriented Programs

7777SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

Figure 6: SDG Model based metric evaluator output

 Figure 7: SDG Model for the program

E S T I M AT I N G R E L I A B I L I T Y B A S E D O N

M E T R I C E VA L U AT E D

Inputs given for reliability prediction are java
programs. Data set needed for training is created
by using these java files for obtaining the target
object oriented metric values. The java program is
parsed to obtain these measures. The ANTLR based
compiler tool is used for this purpose. The data for
training comprised of metric values corresponding
to the java programs, and target is the reliability
value. This data is used to model the relationship
between metrics and reliability. The functioning of
the model is described in Fig 8.

Figure 8: Reliability Prediction

The overall functionality of the model in Fig. 8 is
implemented as different modules as listed below:

 Parsing and metrics generation module: The input
program is parsed and metrics are generated. This
forms the input value used as training data.

 Reliability determination module: The target
values of the training data are reliability values.
The reliability of the program is evaluated.

 Modeling using neural network: This module
implements training of the neural network with
the generated data to model the relationship
between metrics and reliability.

According to Eldred Nelson’s work [15], a
program’s reliability, means that execution failure
does not occur in a sequence of execution of a
program. So let us assume the total number of
executions done is ‘n’. Let the set of test cases be
T, be:

T = { t1 , t2 ,…,ti }, such that i ranges from 1 to N.

N is the number of test cases. There is a
functionality that maps any input to output during
execution. F(tI)’, is the intended output when input
for test case tI is given. The actual output obtained
will be F(ti). The software failure is when one of
the conditions occur:

 F(ti) F(ti)’
 Failure to terminate
 Premature termination

Compiler-Based Approach to Predict Reliability of Object-Oriented Programs

78 SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

If Pi is the probability that ti is the test case being
executed, then R(1) is said to be the probability that
a single execution becomes successful which is
represented as:

R(1) = i=1
N PiXi (1)

where Xi is the probability of test case ti being
successful. Then the probability that n executions
will produce correct output,

R(n) = R1(1)R2(1)...Rn(1). (2)

Equation (1) applies to a single execution of a
random test case, which is one from the N test cases
available for the software. A considerable number
of executions have to be carried out so as to obtain
the reliability of the software. That is, the value of
n is taken as 200 for the work. When we apply this
to equation (2), the reliability value is obtained.

Modeling Using Neural Network

Prepared data is modeled using the neural network
library of MATLAB. The model called patternnet[16]
is used, using which we can identify a pattern in the
input vector, rather than the dimension and easily
classify the input into output classes. 80% of data
were used for training, 10% for validation and 10%
for testing. There have been many researches on
metrics, that shows that different sets of metrics
serves in determining different domain and
different aspects like the complexity of software,
productivity impact variables, object oriented
properties, assessment of quality, flexibility,
functionality etc. [17]. Different approaches to
reliability estimations have been proposed like
reliability assessment using various measures like
Mean Time To Failure, failure intensity function,
mean value function, etc. [18]. Also models based
on a Mixed Poisson process where the failure rate
follows an Inverse Gaussian distribution is discussed
in [19]. For evaluation of bugs in the code, the bug
statistics at the initial stages of testing is used to
associate reliability issues[20]. But above all these,
in order to predict the reliability of software
accurately, it is important to apply models that both
characterize the observed failure data well and
make accurate predictions of the future [21]. In this
work, the given program is classified as reliable or
unreliable based on the structural complexity which
is represented through various metrics reflecting
the error proneness of the program. A sample of
input data used in this work is shown in the Fig 9.

The patternnet we have used have one input layer,
one hidden layer, and one output layer. The data
that we have evaluated needs to be converted into
relevant format that can be fed into neural network.
From equations (1) and (2), we obtain reliability
value of the software. To proceed to further with
the processing, the obtained result is divided into
two classes as reliable and not reliable. The reliability
value obtained from equation(2) is considered as 1
if R(n) is greater than 0.5 and 0 if less than 0.5, for
software being reliable and not reliable
respectively. This is the target for the patternnet.
The resultant confusion matrix is shown in Fig 10.

C O N C L U S I O N

In current trend of software engineering, object
oriented design is extensively preferred in software
engineering scenarios. All the metrics described are
crucial in determining the quality and reliability of
the developed software in such an environment.
Object oriented programming has many useful
features, the properties like inheritance,
polymorphism, abstraction, and encapsulation.

Figure 9: Sample data for training

Figure 10 : Confusion Matrix

Compiler-Based Approach to Predict Reliability of Object-Oriented Programs

7979SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology, Volume 12, Special Issue 3 (2020)

Object oriented metrics are guaranteeing factors
to reduce maintenance effort and the cost by
serving as early predictors to estimate software fault
proneness. The work has improved accuracy in
prediction of reliability of object oriented software
from around 70% in previous works to more than
90%. This is the prime justification for the selected
metrics to be most influencing factors in predicting
reliability of software. Metrics observation is a
proactive measure that can be taken to ensure
reliability in object oriented software development.

F U T U R E W O R K

The observations can be used to further enhance
the prediction model for detecting the code portion
where defects or improvements can be made.
Suggestions for improvement in the code can also
be a future scope.

R E F E R E N C E S

[1] Terence, Parr. Definitive ANTLR reference, Building
domain specific languages. 2007.

[2] A Survey of Testing Techniques for Object-Oriented
Systems,. Johnson, Jr., Morris S. 1996. Proceedings
of the 1996 Conference of the Centre for Advanced
Studies on Collaborative research.

[3] Object-Oriented Integration Testing. Jorgensen,
Paul C. and Erickson, Carl. 1994, Communications
of ACM, pp. 30-38.

[4] An UML Statechart Diagram-Based MM-Path
Generation Approach for Object-Oriented
Integration Testing. Zhao, Ruilian and Lin, Ling. s.l.:
World Academy of Science, Engineering and
Technology, 2008, International Journal of Applied
Mathematics and Computer Sciences.

[5] Object state testing for object-oriented programs.
Gao, J.Z., et al., et al. 1995. Computer Software and
Applications Conference.

[6] Model Based Distributed Testing of Object Oriented
Programs. Vipin Kumar, K,S and Mathew, Sheena.
s.l. : Procedia Computer Science, Elsevier, 2014.
International Conference on Information and
Communication Technologies.

[7] An Efficient Approach for Distributed Regression
Testing of Object Oriented Programs. Vipin Kumar,
K, S, Lallu, A and Sheena, Mathew. s.l. : ACM Digital
Library, 2014. International Conference on
Interdisciplinary Advances in Applied Computing.

[8] Class Firewall, Test Order, and Regression Testing
of Object-Oriented Programs. Kung, David C., et al.,
et al. 1993, JOOP.

[9] Design Recovery for Software Testing of Object
Oriented Programs. Kung, David C., et al., et al. 1993.
Proceedings of Working Conferenceon on Reverse
Enginering.

[10] Performing Data Flow Testing on Classes. Harrold,
Mary Jean and Rothermel, Gregg. s.l. : ACM SIGSOFT
Software Engineering Notes, 1994. SIGSOFT ’94
Proceedings of the 2nd ACM SIGSOFT symposium
on Foundations of software engineering. pp. 154-
163.

[11] The effect of inheritance on the maintainability of
object-oriented software: an empirical study,IEEE.
Daly, J., et al., et al. s.l. : IEEE, 1995. International
Conference on Software Maintenance.

[12] A Dependence Representation for Coverage Testing
of Object-Oriented Programs. Najumudheen, E,S,F.,
Mall, Rajib and Samanta, Debasis. 2010, Journal
of Object Technology.

[13] Test case prioritization and distributed testing of
object-oriented program,VIPIN KUMAR K S, SHEENA
MATHEW,TURKISH JOURNAL OF ELECTRICAL
ENGINEERING & COMPUTER SCIENCES,DOI: 10.3906/
elk-1806-177

[14] Sayyad Shirabad, J. and Menzies, T.J. The PROMISE
Repository of Software Engineering Databases.
School of Information Technology and Engineering,
University of Ottawa, Canada . Available: http://
promise.site.uottawa.ca/SERepository.

[15] ESTIMATING SOFTWARE RELIABILITY FROM TEST DATA
Eldred Nelson TRW Defense and Space Systems
Group Redondo Beach, California USA, Elsevier,
doi.org/10.1016/0026-2714(78)91139-3

[16] https://in.mathworks.com/help/deeplearning/ref/
patternnet.html

[17] Yasser Ali Alshehri, Katerina Goseva-Popstojanova,
Dale G. Dzielski and Thomas Devine “Applying
machine learning to predict software fault
proneness using change metrics, static code
metrics, and a combination of them” DOI:978-1-
5386-6133-8/18/$31.00, 2018 IEEE

[18] B. R. Tantri and N. N. Murulidhar, “Software
reliability estimation of gamma failure time
models,” 2016 International Conference on System
Reliability and Science (ICSRS), Paris, 2016, pp.
105-109. doi: 10.1109/ICSRS.2016.7815847

[19] N. R. Barraza, “A Mixed Poisson Process and
Empirical Bayes Estimation Based Software
Reliability Growth Model and Simulation,” 2017
IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C),
Prague, 2017, pp. 612-613.doi: 10.1109/QRS-
C.2017.114

[20] Z. Bluvband, S. Porotsky and M. Talmor, “Advanced
models for software reliability prediction,” 2011
Proceedings - Annual Reliabil ity and
Maintainability Symposium, Lake Buena Vista, FL,
2011, pp. 1-5. doi: 10.1109/RAMS.2011.5754487

[21] V. Nagaraju, “Software Reliability Assessment:
Modeling and Algorithms,” 2018 IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), Memphis, TN, 2018, pp. 166-
169. doi: 10.1109/ISSREW.2018.

Compiler-Based Approach to Predict Reliability of Object-Oriented Programs

