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Self-Similar Solution of Spherically Symmetrical Discontinuities
with Increasing Energy in Generalized Roche Model

ABSTRACT

By use of the similarity method, the propagation of magnetogasdynamic spherical shock waves are discussed for
Roche model in increasing energy medium. The effects of radiation heat flux on the discontinuities are also
discussed. We have solve the differential equation by Runge-Kutta method and pattern of flow variables are
illustrated by graphs.
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1.   INTRODUCTION

  n the earlier investigation, the self-similar
solution driven out by a sudden point explosion
of core of the generalized Roche model are
investigated by Carrus et.al [1]. Rogers [2] has
discussed methods for obtaining analyt ical
solution of the same problem. Runga Rao and
Purohit [3] has studied the self similar isothermal
flow in generalized Roche model. Roseenau [4]
has attempted the self similar adiabatic flow
behind spherical shock wave in the presence of
magnetic field. One of the basic assumption of
their work is that the total energy contain behind
the shock front is constant. Deb Ray [5] has
reviewed the Roche model and obtained the exact
non similarity solution taking total energy of the
wave non constant. Ray [6] has discussed the
problem of point and line explosion and found an
exact analytic solution. Analytic solution in the
there cases of plane, cylindrically symmetrical,
spherically symmetrical flows have also been
discussed by Sakurai [7]. Rogers [8] has also
studied the similarity solutio n for all the three cases
in uniform atmosphere later on Singh and
Vishwakarma [9] have discussed the similarity

solution of the flows behind shock waves in a
radiative magnetogasdynamics in which total
energy increases with time. Vishwakarma and
Nath [10] have studied self similar solution of
shock propagation in a mixture of a non ideal gas
of small solid particles.  Michaut and Vincid [11]
have been studies the theoretical and exponential
studies of radiative shocks. Propagation of shock
waves in a dusty gas with exponentially decrease
density and temperature has also studies by
Vishwakarma [12] Singh and Ram Singh [13] have
discussed the propagation of weak shock waves
in non ideal gas. Shinde [14] has discussed the
propagation of cylindrical shock wave in a non-
uniform rotating stellar atmosphere  under the
action of monochromatic radiat ion and gravitation.
Gtretler and Regenfelder [15] have obtained
similarity solution for variable energy shock wave
in a dusty gas under isotherma l flow field condition
Vishwakarma, Yadav [16] have s tudies self similar
analyt ical solut ion for  blast  wave in
inhomogeneous atmosphere with frogen in
magnetic field. Magnetohydrodynamic cylindrical
shock wave in self gravitation gas have been
studies by Singh and Singh [17]. Vishwakarma
and Vishwakarma [18] have been studies in
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analytical description of converging shock waves
in a gas with variable density. Liang and Chen [19]
have obtained numerical study of spherical blast-
wave propagation and reaction.

In this paper, the similarity solution in the
generalized Roche model has been developed,
when the radiation heat flux is more important then
the radiation pressure and radiation energy. The
effect of magnetic field has a lso taken into account.
The unsteady model of Roche consists of a gas
distributed with spherical symmetry around a
nucleus having a large mass (m). It is assumed
that the gravitating effect of gas itself can be
neglected compared with the attraction of heavy
nucleus.

2.  EQUATION OF MOTION AND BOUND-
ARY CONDITIONS

The equation of continuity momentum, field
and energy in the generalized Roche model are,
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where u, P, , h and F are the velocity, pressure,
density, magnetic field and radiation heat flux, at
radial distance (r) from the centre of core at time
(t); G be the gravitational constant. The magnetic
permeability of the medium has taken to be unity
through out the problems. The equation of state
for ideal gas is given by

P= T, (05)

where   is the gas constant.
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Also assuming local thermodyna mic equilibrium
and taking Rosseland’s diffusion approximation,
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where 
 

4
C

 is the Stefan – Boltzmann constant,
C the velocity of light and  the mean free path of
radiation is a function of density and absolute
temperature T.

 ,0
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where 0, , , being constant. In the self similar
model the total energy of the wave is dependent
of time as,

where     ),0q(,BtE q  (08)

The flow variables immediately ahead of shock
denoted by suffix (1) are

 ),2W0(,ARp,0U W
11   (09)

where A is a constant and R denotes the radius
of the shock surface ahead the shock, the magnetic
field distribution is,

 1W2,CRh   (10)
and pressure distribution ahead the shock,
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where C, W and  are constant. The Rankine
Hugonio t  shock condit ions headed by an
isothermal shock is,

 ,mV)uV( s122  (12)
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h2 (V-u2) = h1, V, (15)

T1 = T2, (16)

where suffix 2 denotes the flow variables just
behind the shock and 1 denotes flow variables just
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ahead the shock, m denotes the mass per unit area across the shock and V be the shock velocity and
given by,

 
.

dt
dRV  (17)

3. TRANSFORMATION OF EQUATIONS OF MOTION

In order to reduce the equation of flow to ordinary differential equation we now introduce the
following transformations.
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and the limit of q and W are
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We see the solution of equation (01) - (04) in the form
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using equation (18) in the equation (06) with the help of equation (05), we obtain
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The equation (01) - (04) and the equation (05) are then transformed with the help of the relations
(18) and (20) to following form,
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where   
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is a dimension less parameter.
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The transformed jump condition at the shock front is given by
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4.  RESULT AND DISCUSSIONS

For exhibiting the numerical solution it is
convenient to write the field variables in non
dimensional form,
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Distribution of flow variables in the flow-field
behind the shock front are obtained by numerical
integration of equations (22) to (25) by Range-
Kutta method of fourth order. For the purpose of
numerical integration the values of are W = 1, 1.5.
And the other parameters are,
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From Fig. 1 to 5, the nature of flow and field
variables for adiabatic case are illustrated, it is
observed from Fig.1, 2 & 4 that that velocity,
density and pressure are minimum at shock front

Self-Similar Solution of Spherically Symmetrical Discontinuities with Increasing Energy in Generalized Roche Model

but  increases rapidly towards the center of
explosion in adiabatic case and from Fig. 3 & 5 it
is observed that magnetic field and radiation heat
flux is maximum at shock front but decreases
towards the centre of explosion.

Fig.1: Velocity Distribution

Fig.2: Density Distribution

Fig.3: Magnetic Field Distribution
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5. CONCLUSION

In present investigation, problem concerning
the propagation of spherically symmetrical
discontinuities in generalized Roche Model is
theoretically investigated,the effect of radiation
heat flux is also discussed . The nature of flow
and field variables for adiabatic case are illustrated
through graphs, it is clear from the graphs that
velocity, density and pressure are minimum at
shock front .Distribution of magnetic field and
radiation heat flux is maximum at shock front but
decreases towards the centre of explosion.
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NOMENCLATURE

u- Velocity
P- Pressure
- Density
m - Mass
T - Temperature
- Density ratio
- Similarity Variable
F- Radiation Heat Flux
r- Radial Distance from the surface
R- Shock distance
t- Time
G- Gravitational Constant
MA- Alfven Mach number
E- Total energy
- Gas constant
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Fig.5: Radiation Distribution

Fig.4: Pressure Distribution


