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ABSTRACT

The occurrence of infectious diseases was the principle reason for the demise of the ancient India. The
main infectious diseases were smallpox, measles, influenza and typhus. There were also other diseases
such as whooping cough, the mumps and diphtheria. It would be very difficult to obtain current information
regarding important diseases, methods of transmission, methods of control and the likes. Since the wrong
theories or knowledge have hindered advances in understanding. Therefore, this paper seeks to give a
simple and clear description of mathematical models for infectious diseases. It has become important tools
in understanding the fundamental mechanisms that drive the spread of infectious diseases.
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1. INTRODUCTION

Since the spread of infectious disease has always
been of big concerns and poses a threat to public
health, as well as the economic and social developments
to human society. Therefore its prevention and control
become extremely important,[5].

As, it is quite obvious that human or animal invasions
of new ecosystems, increased international travel, and
changes in social and economic patterns will continue
to provide opportunities for new and existing infectious
diseases. Scientific experiments are usually the way
to obtain information and to test hypotheses.
Experiments in epidemiology are often difficult or
impossible to design. Even if we are able to arrange
an experiment there are serious ethical questions
involved in withholding treatment from a control group.
Sometimes data may be collected from reports of
epidemics or of endemic disease levels, but they are
often incomplete or inaccurate. Hence, parameter
estimation and model fitting are very difficult, [2].
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Still or perhaps because of this, ecological and
public health challenges that infectious diseases
present have been addressed with mathematical
models.

Mathematical models have become important
tools in understanding the fundamental mechanisms
that drive the spread of infectious diseases and
suggesting strategies for their control. This
understanding the transmission characteristics of
infectious diseases can lead to better approaches to
reducing the transmission of these diseases, [9]. More
specifically, mathematical models:

i. Help clarify assumptions, variables, and parameters
e.g. pathways involved in parasite spreading or
degree of heterogeneity needed;

ii. Provide conceptual results such as thresholds for
disease invasion or plausibility of parasite eradication;

iii. Can contribute to the design and analysis of
epidemiological surveys, especially by suggesting
crucial data that should be collected;
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iv. Can be used as experimental tools for testing
control measures and determining sensitivities to
changes in parameter values;

v. Can be used to compare and optimize costs and
efficiency of various detection, prevention and
control programs;
When parasites are used as control agents, models

can provide qualitative insights into the circumstances
under which parasites are capable of regulating their
host population, and of doing so in an adequate and
stable manner, [1].
2. CLASSIFICATION OF MATHEMATICAL

MODELS
The methods to model an epidemic have to take in

consideration its aims and stage of development which
finally divide the model into the following categories,
[11]:

2.1 Compartmental and Distributional Models
For the infection dynamics,  from the  total

population, you can take  at  least  two big groups  of
populations (as variables),  a susceptible  population
and  the  population with  the  infection,  in these
models each one of these subpopulations are called
compartments of susceptibles  and infectives
respectively.

But  also in the  infected  compartment  we could
explore  the  distribution of severity  of the  infection
in distributional models, for  example  during  the
incubation period  of infection; in  consequence  the
total  infected  population is the  sum  of those  in all
the different levels of severity.

2.2 Discrete and Continuous Models
Changes in population involved in a infection

transmission model can take place either in discrete
steps or as a smooth continuous process. In discrete
models, difference equations reflect the change over
the whole time step, whereas in continuous models,
differential equations are developed to explore

changes in one variable with a diminishingly small
change in another variable. For example sexual
interactions allowing the spread of HIV occur
continuously, so most models of HIV epidemic are
continuous.

2.3 Deterministic Models
In a deterministic model events are not subject to

chance and two realizations of a model using the same
parameters and exact starting conditions will give
exactly the same results.  However, results can diverge
in the case of deterministic chaos because it is
impossible to exactly specify both starting conditions
and the value of variables.

2.4 Stochastic Models
In stochastic models chance is taken into account.

There  are a number  of ways to allow the events  in a
model to be influenced by chance,  but  the  most
common  and  rigorous  method  is Monte  Carlo
simulation, where the  set of possible next  events  is
defined with  a probability attached to each.  A random
number  generator is then  used to  calculate  when
the  next  event  will occur and  which of the range of
possible events  it will take  place.
3. BASIC ASSUMPTIONS TO INFECTION

MODELS
Many epidemiological models of infections use the

conventional assumption that the host population is
held constant, independent of the presence or absence
of the infection, by an unspecified mechanism. This
assumption stems from a history of medical interest in
human diseases, predominantly in developed
countries, where population densities do usually
remain roughly constant on time scales appropriate
to the operation of most diseases, [8].

On the other hand, densities of human populations
in developing countries and most animal populations
need to be treated as a dynamic variable. As expected,
models with a variable host population size are often
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more difficult to analyze because this additional
variable requires an extra equation, [4].

Two main groups can be singled out among the
deterministic models for the spread of infectious
diseases which are transmitted through person-to
person contact. For infections, modelers distinguish
several classes of hosts according to their status with
respect to the disease:

Susceptible, S The portion of the population that
has not been affected by the
disease but may be infected in
case of contact with a sick person.

Exposed,   E Latent period of the disease;
individuals are infected but not yet
infectious and hence not yet able
to pass the disease to the others.
During this period the parasite
reproduces rapidly within the host
but its abundance is still too low
for active transmission to other
susceptible hosts.

Infectious,  I Individuals already infected and
who are also responsible for the
transmission of the disease to the
susceptible group.

Do not commute for infected individuals which are
those who are either exposed or infectious, E + I.

Recovered , R Individuals recovered from the
disease who have temporary or
permanent immunity or, eventually,
those who have died from the
illness and not from other causes.

Not all epidemiological models will include all of
these classes, but some will include more. In addition,
many host populations are structured to various
extents, so the models must divide the heterogeneous
population to classes within which the individuals have
similar characteristics. This division into groups can
be based not only on the mode of transmission,

contact pattern, latent period, infectious period,
genetic susceptibility or resistance, type and amount
of control, but also on social, cultural, economic,
demographic (age or sex), or geographic (spatial
location) factors, [3].

We also stress here that the exposed and infectious
periods cannot be mistaken with the incubation (or
asymptomatic) and symptomatic periods, respectively.
This is because one can transmit parasites long before
becoming symptomatic, and one can still be
symptomatic while no longer infectious.

The choice of which classes to include in a model
depends on the characteristics of the modeled disease
and the purpose of the model, [10].

The Common assumptions that are used in the
formation of mathematical models for infection include
the following

a. The disease is transmitted by contact between an
infected individual with susceptible individuals.

b. The disease is transmitted instantaneously upon
contact, and the population under consideration.

c. All susceptible individuals are equally susceptible
and all infected individuals are equally infectives.

4. THE MATHEMATICAL MODELS
During the development of epidemiology in the
population, deterministic (compartmental) models
played a central role. Such models divide the
population into homogeneous sub-populations. An
ordinary differential equation classically
corresponds to each class which describes the rate
of change in the size of individuals in the respective
class as a result of all processes affecting this rate.

For a generic state variable , we may formally write:

dt
dX

= rates of all processes affecting X
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The Prior Deterministic Mathematical models
are described as:

4.1 SIR - Mathematical Model
SIR models are a traditional point of departure in

exploration of infection dynamics in epidemiology.  SIR
model is composed with the assumption that hosts are
born as susceptibles, as

dt
dS

= rates of…..births - natural deaths - new

infections

dt
dI

 = rates of ......new infections - natural deaths -

disease - induced deaths - recovery

dt
dR

 = rates of ......recovery - natural deaths

The SIR model is used when the disease under
study confers permanent immunity to infected
individuals after recovery or, in extreme cases, it kills
them. After the contagious period, the infected
individual recovers and is included in the R group.
These models are suitable to describe the behavior
of epidemics produced by virus agent diseases
(measles, chickenpox, mumps, HIV, poliomyelitis),
[7].

rRcI
dt
dR

IrcIqbkSI
dt
dI

rSIpbRSbkSI
dt
dS
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4.2 SIS- Mathematical Model
The SIS model assumes that the disease does not

confer immunity to infected individuals after recovery.
Thus, after the infective period, the infected individual
recovers and is again included in the S group.
Therefore, the model presents only two
epidemiological compartments, S and I. This model
is suitable to describe the behavior of epidemics
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produced by bacterial agent diseases (meningitis,
plague, venereal diseases) and by protozoan agent
diseases (malaria), [7].

IrIbkSI
dt
dI

rSIbSkSI
dt
dS
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Particularly
SI- Mathematical Model

IrIbkSI
dt
dI

rSbSkSI
dt
dS
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And
SIRS- Mathematical Model

gRrRcI
dt
dR

IrcIqbkSI
dt
dI
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dt
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3. SEIR- Mathematical Model

The exposed class E is often omitted as not crucial
for the host-parasite interaction. Acronyms are often
used to name epidemiological models, and these are
based on the classes they contain and the flow patterns
between these classes. So, for example, in the SEIR
model, first become susceptible, then exposed, then
infectious, and finally recover with permanent
immunity.

rRcI
dt
dR

IrcIbqvE
dt
dI

ErvIbqkSI
dt
dE
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dt
dS
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Particularly

SEIRS -Mathematical Model

An SEIRS model is similar, but there is no passively
immune class, and the immunity is only temporary so
that recovered individuals regain their susceptibility
after the temporary immunity fades away.

gRrRcI
dt
dR

IrcIbqvE
dt
dI

ErvIbqkSI
dt
dE

gRrSIpbRESbkSI
dt
dS
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With initial data
S (0) = S0 > 0; E (0) = E0 > 0; I (0) = I0 > 0
and R (0) = 0.

Here, followings are initial populations and infection
related parameters defined.
SO = Population of susceptibles at initial state.
IO = Population of infectives at initial state.
E0 = Population of exposed individuals at initial state.
k = The transmission rate of infection from infectives

to susceptibles.
b = The birth rate of susceptible, removed, exposed

individuals.
r = The death rate of susceptible, exposed and

removed individuals.
b’= The birth rate of infective individuals.
r’ = The death rate of infected individuals.
v = The rate at which exposed individuals pass from

latent to the Infective Class.
c = The cure rate of infectives.
g  = The rate at which removed individuals loose

their   immunity.
  = The rate at which infective hosts loose their

temporary immunity.
p = The fraction of offsprings of infective parents,

who are susceptible at birth.

q = The fraction of offsprings of infective parents,
who are infective at birth.

q1 = The fraction of offspring of infective parents who
are in latent period.

q2   = The fraction of offsprings of infective parents
who are infective at birth.

1   = p + q  and 1 = p + q1 + q2

5. REMARK
From the above, it is observed that the modeling

of infectious diseases has shown rich dynamic
behavior and phenomena. The much understanding
has been gained through the use of relative simple
models capturing only the most critical biological
mechanisms. The infection dynamics can employ well
developed modern dynamics theory to better
characterize the inherent patterns and also to
investigate long term behavior of infection
transmissions. Further the analysis of model
parameters can help us to make more realistic
simulations and reliable transmission prediction which
may not be feasible by experiments or field studies.
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