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ABSTRACT

The term load forecast refers to the projected load requirement using systematic process of defining load in
sufficient quantitative detail so that important power system expansion decisions can be made. Load forecasting
is necessary for economic generation of power, economic allocation between plants (unit commitment
scheduling), maintenance scheduling & for system security such as peak load shaving by power interchange
with interconnected utilities. With structural changes to electricity in recent years, there is an emphasis on
Short Term Load Forecasting (STLF).STLF is the essential part of power system planning & operation. Basic
operating functions such as unit commitment, economic dispatch, and fuel scheduling & unit maintenance can
be performed efficiently with an accurate forecast. Short term load forecasting can help to estimate load flows
& to make decisions that can prevent overloading. Timely implementations of such decisions lead to improvement
of network reliability & to the reduced occurrences of equipment failures & blackouts.

The aim of short term load forecasting is to predict future electricity demands based, traditionally on historical
data and predicted weather conditions. Short term load forecasting in its basic form is a statistical problem,
where in the previous load values (time series variables) and influencing factors (casual variables) are used to
determine the future loads.

1. INTRODUCTION

Load forecasting is an important part of energy
management systems. Load forecasting refers to
projected load requirement using systematic process
of defining load in sufficient quantative detail so that
important power system decisions can be made. a
total forecast is obtained by combining forecasts for
various classes of customers such as residential
commercial, industrial and others. Depending on the
time zone of planning strategies the load forecasting
can be divided into following four categories:
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1. Very short time load forecast: These are required
for on line operation and control of system. The
time ranges from a few second to a minute.
Generally these forecasts are more accurate due
to the fact that the lead time is very small.

2. Short time load forecast: Short term load forecast
have special importance in operation, control and
techno commercial decisions. It is made on hourly
basis for lead time of an hour to a week ahead.

3. Midterm load forecast: It ranges from a week
ahead to six months. Generally energy estimates
are made in this range. Energy sales and fuel
purchase agreements are based on these forecasts.
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4. Long term load forecast: Long term load forecast
ranges from a year to 20 years. Theses in general
are estimate of peak demand in future years. It is
very much needed in system generation and
transmission planning.

Short term load forecasting plays an important role
in power systems. Accurate short term load forecasting
has a significant influence on proper system operational
efficiency such as unit commitment, annual hydro
thermal maintenance scheduling, hydro thermal
coordination, demand side management, interchange
evaluation, security assessment and other purposes..
Improvements in the accuracy of short term load
forecasts can result in significant financial savings for
utilities and co generators. Short term load forecasting
can help to estimate load flows and to make decisions
that can prevent overloading. Timely implementations
of such decisions lead to the improvement of network
reliability and to reduced occurrences of equipment
failures and blackouts.
2. MULTILAYER FEED FORWARD NETWORK WITH

BACK    PROPAGATION LEARNING

A neural network consists of a number of neurons
that are connected in massively parallel architecture.
Just as there are many inputs (stimulation levels) to a
neuron, there should be many input signals to our
processing element. All of them should come into PE
simultaneously. In response, a neuron either fires or
does not fire depending on some threshold level. Each
input will be given a relative weighting, which will affect
the impact of the input. This is something like the
varying synaptic strengths of the biological neurons.
Weights are adaptive coefficients within the network
that determine the intensity of the input signal. All of
the products will be summed and compared to some
threshold to determine the output. If the sum of the
inputs is greater than threshold value, the processing
element generates a signal. If the sum of the inputs is
less than the threshold value, no signal is generated.

A class of neural networks that overcomes
limitations of single layer linear networks and is able
to model non linear relationships between the inputs
and the outputs is the Multilayered Feed forward
Network with learning carried out using the Back
Propagation Rule. This network consists of a set of
input units, a set of output units and one or more layers
of intermediate units. These intermediate unit layers
are sometimes referred to as a hidden unit layers since
the unit in them do not directly communicate with the
environment.

In the multilayer network, the first set of neurons
connecting to the inputs serve only as distribution
points. They perform no input summation. The training
instance set for the network must be presented many
times in order for the interconnection weights between
the neurons to settle into a state for correct
classification of input patterns. While the network can
recognize patterns similar to those they have learned,
they do not have the ability to recognize new patterns.
This is true for all supervised learning networks. In
order to recognize new patterns, the network needs
to be retrained with these patterns along with
previously known patterns. If only new patterns are
provided for retraining, then old patterns may be
forgotten. In this way learning is not incremental over
time. This is a major limitation for supervised learning
networks. Another limitation is that the back
propagation network is prone to local minima, just
like any other gradient descent algorithm.

A Multilayer perceptron is able to model nonlinear
relationships between the inputs and outputs. This
network consists of a set of ‘n’ input units, a set of
‘m’ output units and one or more layers of ‘N’
intermediate units. These intermediate unit layers are
called hidden unit layers. Hidden units   vj , j =1,......,N
and output units yi , i =1, 2,......,m process their input
as the case of the single layer net. Thus
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With j=1,……,N    and     i=1,…….., m
The learning rule is a generalization of the delta rule
for multi- layer networks. It carries out a minimization
of the mean square error E which is now a function of
both weight matrices w and W
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The algorithm carries out a steepest descent correction
on the matrix giving w and W. Thus
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Since the weight errors 
i  and  j  are successively

back propagated from output layer to hidden layer,
this algorithm is known as ‘Error Back – Propagation’.
The main difficulties with these networks are that they
sometimes get stuck into local minimum and also their
convergence is slow. The slow convergence can be
overcome partially by using momentum terms. To
overcome both the problems a second order
optimization technique based on Newton’s method
called Levenberg – Marquardt rule has been used.
The L-M update rule is –

W = (JT J + I)1 JTe ...............(2.5)

Where J is the jacobian matrix of derivatives of
each error to each weight, ‘μ’ is a scalar and ‘e’ is the
error vector. If the scalar ‘μ’ is very large the above
expression approximates gradient descent, while if it
is small the above expression becomes the Gauss –
Newton method. The Gauss – Newton method is
faster and more accurate near an error minimum so
the aim is to shift towards the G-N method as quickly
as possible. Thus, μ is decreased after each successful
step and increased only when a step increases the
error.

2.1 FFNN Implementation For A Gujrat Utility

The performance is studied on the historical data
of a Gujrat State utility. This data includes hourly loads
and temperatures of two (T1 and T2) major load
centers. The data of three weeks were taken for fixing
the parameters of the various models (historical data).
The forecaster was used to forecast the hourly load
up to a week. The models were designed to give the
optimum performance. The parameters of the models
were finalized after the several trial and error efforts
to give the optimum performance. Though each of
these models have different numbers of input variables
but the error performance was best for the individual
method of forecasting. The time series formulation had
T1 and T2 at the forecast hour as exogenous variables,
whereas, load at hour k-1 and k-2 was taken as the
time series inputs, where, k is the hour of forecast.
There were separate models for forecasting weekdays
and weekend days. The FFNN had 35 input variables
containing loads at k-1, k-2, k-3, k-25, k-26, k-27,
k-168, k-169, k-170 as load variables, and
temperature of both places at k, k-1, k-2, k-3 along
with 07 inputs for day type. The networks with 10
hidden neurons were selected on basis of trial and
error. For the Gujrat utility system, network
architecture with 35 input nodes, 10 neurons and a
single output is selected after trial and error approach



12
S-JPSET : Vol. 7, Issue 1, ISSN : 2229-7111 (Print) & ISSN : 2454-5767 (Online) copyright  samriddhi, 2010-2015

with different sets of inputs and number of neurons.
The input set consisted of following:

1. Day type: 07 input. For example, 1000000 for
Monday, 0100000 for Tuesday and so on.

2. Hour type: The 24 hour of the day was coded into
05 bit binary number.

3. Load: 09 inputs were used. They are 03 hour prior
load to the hour to be forecasted i.e. L(k-1),
L(k-2), L(k-3), where k is the instant at which the
load is to be forecasted. Other similar inputs are
L(k-25), L(k-26), L(k-27), L(k-168), L(k-169),
L(k-170).

4. Temperature: 14 inputs were used. These were
T1 (k), T1 (k1), T1 (k2), T1 (k3) for Jamnagar
city hourly temperature and T2 (k), T2 (k1),
T2 (k2), T2 (k3)for Bhuj city hourly temperature.
Apart from these temperatures of the day, previous
day and day a week before for both the places
were taken as inputs.

Single output node is taken which provides the
forecasted load at a particular hour. Network with
10 hidden layer nodes were found sufficient for this
problem. The learning rate selected was .001

3. RADIAL BASIS FUNCTION NETWORK

A Radial Basis Function (RBF) Network consists
of two layers, a hidden layer with nonlinear neurons
and an output layer with linear neurons. Thus the
transformation from the input space to the hidden unit
space is non-linear whereas the transformation from
the hidden unit space to the output space is linear.
The basis functions in the hidden layer produce a
localized response to the input i.e. each hidden unit
has a localized receptive field. The basis function can
be viewed as the activation function in the hidden layer.
The network itself is used to select its input variables
and parameters. The network has a characteristic of
convergence to the lowest possible training error for
given set of network parameters and input variables.

The advantage of this network lies in selection of input
variables on the basis of network performance and
this selection includes the load time series and weather
variables. The training of the network is considerably
fast and does not need monitoring of training process
for non-convergence and parameter tuning, during
design and testing.

The basic model of a RBF network is shown in
Fig.2.1. It is different from a feed forward network.
A radial basis neuron receives the vector distance
between its weight vector (cluster center) ‘w’ and the
input vector multiplied by the bias ‘ bg’ unlike the sum
of product of inputs and respective synaptic weights
in case of feed forward network.

The RBF unit, transfer function in case of
perceptron, is similar to Gaussian density function,
which is defined by center position and the bias. The
output of the R B F unit is given by.
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Where
Wij = Center of ith R B F unit for input variable j
bg= Bias of the R B F unit
Xjp=jth variable of the input pattern
The most common basis function chosen is a

Gaussian function, in which case
The activation level Oj of hidden unit j is calculated

by
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Fig 2.1: Radial Basis Function Network
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Where X is the input vector, Wj is weight vector
associated with hidden unit j (i.e., the center of its
Gaussian function), and σ2 is the normalization factor.
The outputs of the hidden unit lie between 0 and 1;
the closer the input to the center of the Gaussian, the
larger the response of the node. Because the node
produces an identical output for inputs with equal
distance from the center o f the Gaussian, it is called a
Radial basis.

The activation level Oj of an output unit is
determined by

O j =   Wji OI + ..............(3.3)

Where Wji is the weight from hidden unit i to output
unit j . The output units form a linear combination of-
the nonlinear basis-functions, and thus the overall
network performs a nonlinear transformation of the
input.

The normalization factor represents a measure o f
the spread of the data in the cluster associated with
the hidden unit. It is commonly determined by the
average distance between the cluster center and the
training instances in that cluster i.e. for hidden unit j.
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where X is a training pattern in the cluster, Wj is
the center o f the cluster associated with hidden unit j,
and M is the number of training instances in that cluster.

Such a network maps f: Rn  R according to
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where nRx
 is the input vector, (.) is a non-

linear function, ||. || denotes the Euclidean norm,

ri ni 0, are the weights, r
n

i niRc  1, , are
known as the RBF centers.

A common choice of the non-linearity is the
Gaussian function  (v) = exp (-v²), Designing an

RBF network involves choosing the centers 


ic from

the data points x . For this Orthogonal Least Square
(OLS) Algorithm is used.

This method is based on linear regression models
according to which a desired response(n) is defined
as
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Where the ai, are the model parameters, the xi (n)
are the regressors and e(n) is the residue (error). Using
matrix notation we can write
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Thus the OLS learning method chooses the RBF

centers 
Mccc ,......, 21

as a subset of the training data

vectors 
MXXX .....,, 21 where M <N . The centers

are determined one at a time until a network of
adequate performance is constructed. At each step
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of the procedure, the increment to the explained
variance of the desired response is maximized. This
way the OLS method results in a RBF network with
less number of hidden neurons than that of an RBF
network with randomly selected centers.

3.1 RBFNN Implementation for a Gujrat Utility

The numerical simulation was performed on load
data of state of Gujrat. The hourly temperature data
of two cities, Jamnagar and Bhuj were used in the
simulation. The training set consists of three week
historical data prior to the forecast hour and a week
was taken as the test pattern. To arrive at an
appropriate network single, weekly and hourly
architectures were tried. The hourly structure was

found to be most promising. The load curve also
indicates strong dependence of hourly load. Separate
network is selected for each hour. The weekdays and
weekend days load characteristics are very much
different; therefore, separate hourly structures for
weekend days and weekdays are taken. The holiday
load is forecasted using the weekend day structure.
Thus there are basically two types of structures each
o f twenty-four networks. As far as the size o f training
sample is concerned the ratio of data used for training
to that o f forecast remains same. We observed in
our study that in short term forecasts the nearness o f
data used for training to that to be forecasted is an
important factor.

Fig3.1:Flow Chart for Feature and Architecture Selection

Comparative Study of Short Term Load Forecasting Using Multilayer Feed Forward Neural Network
With Back Propagation Learning and Radial Basis Functional Neural Network
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The input selection was made starting with first three
hour load values prior to the hour to be forecasted
i.e., L(K-1), L(K-2), L(K-3), where k is the instant at which
forecast is to be made. The first three hour loads were
selected heuristically. The results and inference drawn
for various inputs in selection procedure for feature
and architecture selection is illustrated for the system
in table 1 for weekend day. The process was
terminated when no appreciable improvement in the
architecture selection was found.

The input variables, which do not improve the
network performance, may worsen the performance
of the network either in terms of accuracy or the
training time. This is an important observation. This is
equally true for feed forward networks where the input
selection is often performed on basis o f engineering
judgment. It is obvious from table that only load series
data is required set for proper forecasting for this
particular system with hourly structure for weekend
days. Thus, the selected input variables for weekend
structure are L (K-1), L (K-2), L (K-3), L (K-4), L (K-168)load
series values.

A similar procedure is applied for weekday
structure and the input variable selected by the method
are L (K-1), L (K-2), L (K-3), L (K-4), L (K-168) load series
values and T(k) , T(k-1), T(k-2) temperature time series
values of one placer It is worth noting that hourly
temperature data of other place (T2) was also used in
the process but were rejected. Case was similar for
the daily average temperature for the two cities. The
final architecture selected from the tablet corresponds
to the final base case i.e. six inputs and 3 RBF units
with bias value of 2.374. The architecture parameters
for the weekdays are found to be one with 9 inputs
and 5 RBF unit search with bias value of 0.7928.

4. RESULTS AND DISCUSSIONS

4.1 Case Short Term Load Forecasting on
Seasonal Transition Weeks for a Gujrat
Utility:

COMPARATIVE PERFORMANCE:

Table-4.1 : Forecast Errors (MAPE) for a Selected Week
in Winter (Dec. 17-23)

Winter (Dec. 17-23) 

DAY Forecast Errors 

 (MAPE) by FFNN 

Forecast Errors  

(MAPE) by RBFNN 

Monday 1.2432 1.1105 

Tuesday 0.9937 1.1171 

Wednesday 1.4074 1.0776 

Thursday 1.6119 1.5838 

Friday 1.8903 1.0727 

Saturday 1.0621 1.6459 

Sunday 1.1672 0.7494 

Average 1.3393 1.1939 

 

Table-4.2 : Forecast Errors (MAPE) for a Selected Week
in Spring (Mar. 25-31)

Spring (Mar. 25-31) 

DAY Forecast Errors 

(MAPE) by FFNN 

Forecast Errors 

(MAPE) by RBFNN 

Monday 1.4455 0.9606 

Tuesday 0.9916 1.1114 

Wednesday 1.3930 1.0856 

Thursday 2.4804 1.7412 

Friday 1.2875 0.7082 

Saturday 0.6662 0.7226 

Sunday 0.7371 2.2876 

Average 1.2854 1.2310 

 

Fig 4.1 : Comparative Plot Showing Forecast Errors
(MAPE) for a Selected Week in Winter (Dec.17-23)
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Fig 4.2 : Comparative Plot Showing Forecast Errors
(MAPE) for a Selected Week in Spring (Mar. 25-31)

Table-4.3 : Forecast Errors (MAPE) for a Selected Week in
Summer (June 19-25)

Summer (June 19-25) 

DAY Forecast Errors  

(MAPE) by FFNN 

Forecast Errors 

 (MAPE) by RBFNN 

Monday 0.9046 0.9608 

Tuesday 1.0007 1.1732 

Wednesday 1.3168 1.1359 

Thursday 1.0421 1.4486 

Friday 0.9248 0.9218 

Saturday 0.7331 1.1496 

Sunday 1.6191 1.6583 

Average 1.0773 1.2068 

 

 Fig 4.3 : Comparative Plot Showing Forecast Errors
(MAPE) for a Selected Week in Summer (June 19-25)

4.2 Case: Short Term Load Forecasting on a
Weekday (Tuesday Nov.22) and Holiday
(Sunday Nov.27) for a Gujrat Utility:

Table - 4.4: Forecast Results with FFNN (Tuesday Nov.22)

Fig  4.4: Forecast error with FFNN (Tuesday Nov.22)

Hour Actual 

Load(MW) 

Forecasted 

load(MW) 

Absolute 

Error(MW) 

Absolute 

% Error 

1 2479 2572 93 3.75 

2 2470 2563 93 3.76 

3 2404 2530 126 5.24 

4 2491 2534 43 1.73 

5 2660 2509 151 5.68 

6 2988 2738 250 8.37 

7 3094 2835 251 8.37 

8 3144 3007 137 4.36 

9 3115 3140 25 0.8 

10 3060 3108 48 1.57 

11 2937 2867 70 2.38 

12 2750 2947 197 7.16 

13 2759 2868 109 3.95 

14 2838 2896 58 2.04 

15 2901 2921 20 0.69 

16 2918 2929 11 0.38 

17 2936 2983 47 1.6 

18 3128 3011 117 3.74 

19 3185 3039 146 4.58 

20 3059 3085 26 0.85 

21 2922 2998 76 2.6 

22 2836 2871 35 1.23 

23 2733 2838 105 3.84 

Comparative Study of Short Term Load Forecasting Using Multilayer Feed Forward Neural Network
With Back Propagation Learning and Radial Basis Functional Neural Network
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Table - 4.5: Forecast Results with FFNN (Sunday Nov.27)

Fig 4.5: Forecast Error with FFNN (Sunday Nov.27)

Fig 4.6: Forecast Error with RBFNN (Tuesday Nov.22)

Hour Actual 

Load(MW) 

Forecasted 

load(MW) 

Absolute 

Error(MW) 

Absolute 

% Error 

1 2479 2570 91 3.67 

2 2470 2524 54 2.19 

3 2404 2413 9 0.37 

4 2491 2398 -93 3.73 

5 2660 2783 123 4.62 

6 2988 2884 104 3.48 

7 3094 3002 92 2.97 

8 3144 3095 49 1.56 

9 3115 3086 29 0.93 

10 3060 2916 144 4.7 

11 2937 2898 39 1.33 

12 2750 2688 62 2.25 

13 2759 2690 69 2.5 

14 2838 2808 30 1.06 

15 2901 2798 103 3.55 

16 2918 2886 32 1.1 

17 2936 2886 50 1.7 

18 3128 2998 130 0.96 

19 3185 3086 99 3.11 

20 3059 2973 86 2.81 

21 2922 2878 44 1.5 

22 2836 2754 82 2.89 

23 2733 2671 62 2.27 

Table - 4.6: Forecast results with RBFNN (Tuesday Nov.22)

Hour Actual 

Load(MW) 

Forecasted 

load(MW) 

Absolute 

Error(MW) 

Absolute 

% Error 

1 2479 2536 57 2.3 

2 2470 2549 79 3.2 

3 2404 2534 120 5.41 

4 2491 2520 29 1.16 

5 2660 2518 142 5.34 

6 2988 2650 338 11.31 

7 3094 2884 210 6.79 

8 3144 3036 108 3.44 

9 3115 3041 74 2.38 

10 3060 2997 63 2.06 

11 2937 2975 38 1.29 

12 2750 2925 175 6.36 

13 2759 2874 115 4.17 

14 2838 2848 10 0.35 

15 2901 2915 14 0.48 

16 2918 2935 17 0.58 

17 2936 2949 13 0.44 

18 3128 2986 142 4.54 

19 3185 3067 118 3.7 

20 3059 3064 5 0.16 

21 2922 2977 55 1.88 

22 2836 2892 56 1.97 

23 2733 2801 68 2.49 
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5.CONCLUSION
The results of the system with these two networks

reveal the following:
 RBF network predicts the hourly load more

accurately than FFN network. For the given data,

the average percentage error in forecasted hourly
loads for RBF is lesser than FFN network.

 Both RBF & FFN networks are able to predict
the load extremely fast.

 RBF takes considerably less CPU time for training
time as compared to FFN network.
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Table - 4.7: Forecast Results with RBFNN (Sunday Nov.27)

Hour Actual 

Load(MW) 

Forecasted 

load(MW) 

Absolute 

Error(MW) 

Absolute 

% Error 

1 2479 2531 52 2.11 

2 2470 2542 72 2.9 

3 2404 2481 77 3.17 

4 2491 2520 29 1.17 

5 2660 2549 111 4.15 

6 2988 2678 310 10.37 

7 3094 2922 172 5.36 

8 3144 3038 106 3.37 

9 3115 3042 73 2.33 

10 3060 3061 1 0.05 

11 2937 3039 102 3.47 

12 2750 2843 93 3.37 

13 2759 2797 38 1.36 

14 2838 2878 40 1.42 

15 2901 2916 15 0.53 

16 2918 2902 16 0.55 

17 2936 2954 18 0.61 

18 3128 3057 71 2.27 

19 3185 3096 89 2.81 

20 3059 3072 13 0.42 

21 2922 2951 29 1 

22 2836 2877 41 1.43 

23 2733 2755 22 0.81 

Figure - 4.7: Forecast Error with RBFNN (Sunday Nov.27)

Comparative Study of Short Term Load Forecasting Using Multilayer Feed Forward Neural Network
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